ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibcval5 Unicode version

Theorem ibcval5 9631
Description: Write out the top and bottom parts of the binomial coefficient  ( N  _C  K )  =  ( N  x.  ( N  -  1 )  x. 
...  x.  ( ( N  -  K )  +  1 ) )  /  K ! explicitly. In this form, it is valid even for  N  <  K, although it is no longer valid for nonpositive  K. (Contributed by Jim Kingdon, 6-Nov-2021.)
Assertion
Ref Expression
ibcval5  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K
)  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )

Proof of Theorem ibcval5
Dummy variables  x  k  y  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 9618 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
21adantl 266 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
3 simprl 491 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
k  e.  CC )
4 simprr 492 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  ->  x  e.  CC )
53, 4mulcld 7105 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC ) )  -> 
( k  x.  x
)  e.  CC )
6 simpr1 921 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
k  e.  CC )
7 simpr2 922 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  ->  x  e.  CC )
8 simpr3 923 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
y  e.  CC )
96, 7, 8mulassd 7108 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  ( k  e.  CC  /\  x  e.  CC  /\  y  e.  CC ) )  -> 
( ( k  x.  x )  x.  y
)  =  ( k  x.  ( x  x.  y ) ) )
10 simpll 489 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN0 )
1110nn0zd 8417 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ZZ )
12 simplr 490 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN )
1312nnzd 8418 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  ZZ )
1411, 13zsubcld 8424 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  ZZ )
1514peano2zd 8422 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  e.  ZZ )
16 1red 7100 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  1  e.  RR )
1712nnred 8003 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  RR )
1810nn0red 8293 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  RR )
1912nnge1d 8032 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  1  <_  K )
2016, 17, 18, 19lesub2dd 7627 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  <_  ( N  -  1 ) )
2114zred 8419 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  RR )
22 leaddsub 7507 . . . . . . . . . . . 12  |-  ( ( ( N  -  K
)  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( ( N  -  K )  +  1 )  <_  N  <->  ( N  -  K )  <_  ( N  -  1 ) ) )
2321, 16, 18, 22syl3anc 1146 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( (
( N  -  K
)  +  1 )  <_  N  <->  ( N  -  K )  <_  ( N  -  1 ) ) )
2420, 23mpbird 160 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  +  1 )  <_  N )
25 eluz2 8575 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  <->  ( ( ( N  -  K )  +  1 )  e.  ZZ  /\  N  e.  ZZ  /\  ( ( N  -  K )  +  1 )  <_  N ) )
2615, 11, 24, 25syl3anbrc 1099 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )
2726adantrr 456 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  N  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )
28 cnex 7063 . . . . . . . . 9  |-  CC  e.  _V
2928a1i 9 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  CC  e.  _V )
30 simprr 492 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  e.  NN )
31 nnuz 8604 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
3230, 31syl6eleq 2146 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( N  -  K )  e.  ( ZZ>= `  1 )
)
33 vex 2577 . . . . . . . . . 10  |-  k  e. 
_V
34 fvi 5258 . . . . . . . . . 10  |-  ( k  e.  _V  ->  (  _I  `  k )  =  k )
3533, 34ax-mp 7 . . . . . . . . 9  |-  (  _I 
`  k )  =  k
36 eluzelcn 8580 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  CC )
3736adantl 266 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  k  e.  ( ZZ>= `  1 )
)  ->  k  e.  CC )
3835, 37syl5eqel 2140 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N )  /\  ( N  -  K
)  e.  NN ) )  /\  k  e.  ( ZZ>= `  1 )
)  ->  (  _I  `  k )  e.  CC )
395, 9, 27, 29, 32, 38iseqsplit 9402 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (  seq 1 (  x.  ,  _I  ,  CC ) `  N )  =  ( (  seq 1 (  x.  ,  _I  ,  CC ) `  ( N  -  K ) )  x.  (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ,  CC ) `  N
) ) )
40 elfzuz3 8989 . . . . . . . . . . 11  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  K )
)
4140adantl 266 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  ( ZZ>= `  K )
)
42 eluznn 8634 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>= `  K ) )  ->  N  e.  NN )
4312, 41, 42syl2anc 397 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  N  e.  NN )
4443adantrr 456 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  N  e.  NN )
45 facnn 9595 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ,  CC ) `  N
) )
4644, 45syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ,  CC ) `  N
) )
47 facnn 9595 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN  ->  ( ! `  ( N  -  K ) )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  ( N  -  K ) ) )
4830, 47syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  ( N  -  K ) )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  ( N  -  K ) ) )
4948oveq1d 5555 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  =  ( (  seq 1
(  x.  ,  _I  ,  CC ) `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) )
5039, 46, 493eqtr4d 2098 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  ( K  e.  ( 0 ... N
)  /\  ( N  -  K )  e.  NN ) )  ->  ( ! `  N )  =  ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) )
5150expr 361 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  e.  NN  ->  ( ! `  N )  =  ( ( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) ) )
5210faccld 9604 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  NN )
5352nncnd 8004 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  e.  CC )
5453mulid2d 7103 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( 1  x.  ( ! `  N ) )  =  ( ! `  N
) )
5543, 45syl 14 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  N )
)
5655oveq2d 5556 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( 1  x.  ( ! `  N ) )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) )
5754, 56eqtr3d 2090 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) )
58 fveq2 5206 . . . . . . . . 9  |-  ( ( N  -  K )  =  0  ->  ( ! `  ( N  -  K ) )  =  ( ! `  0
) )
59 fac0 9596 . . . . . . . . 9  |-  ( ! `
 0 )  =  1
6058, 59syl6eq 2104 . . . . . . . 8  |-  ( ( N  -  K )  =  0  ->  ( ! `  ( N  -  K ) )  =  1 )
61 oveq1 5547 . . . . . . . . . . 11  |-  ( ( N  -  K )  =  0  ->  (
( N  -  K
)  +  1 )  =  ( 0  +  1 ) )
62 0p1e1 8104 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
6361, 62syl6eq 2104 . . . . . . . . . 10  |-  ( ( N  -  K )  =  0  ->  (
( N  -  K
)  +  1 )  =  1 )
64 iseqeq1 9378 . . . . . . . . . 10  |-  ( ( ( N  -  K
)  +  1 )  =  1  ->  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC )  =  seq 1 (  x.  ,  _I  ,  CC ) )
6563, 64syl 14 . . . . . . . . 9  |-  ( ( N  -  K )  =  0  ->  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC )  =  seq 1 (  x.  ,  _I  ,  CC ) )
6665fveq1d 5208 . . . . . . . 8  |-  ( ( N  -  K )  =  0  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  N )
)
6760, 66oveq12d 5558 . . . . . . 7  |-  ( ( N  -  K )  =  0  ->  (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) )
6867eqeq2d 2067 . . . . . 6  |-  ( ( N  -  K )  =  0  ->  (
( ! `  N
)  =  ( ( ! `  ( N  -  K ) )  x.  (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ,  CC ) `  N
) )  <->  ( ! `  N )  =  ( 1  x.  (  seq 1 (  x.  ,  _I  ,  CC ) `  N ) ) ) )
6957, 68syl5ibrcom 150 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  =  0  ->  ( ! `  N )  =  ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) ) )
70 fznn0sub 9022 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
7170adantl 266 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  -  K )  e.  NN0 )
72 elnn0 8241 . . . . . 6  |-  ( ( N  -  K )  e.  NN0  <->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
7371, 72sylib 131 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( N  -  K )  e.  NN  \/  ( N  -  K )  =  0 ) )
7451, 69, 73mpjaod 648 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  N )  =  ( ( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) ) )
7574oveq1d 5555 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) )  =  ( ( ( ! `
 ( N  -  K ) )  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
7628a1i 9 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  CC  e.  _V )
77 vex 2577 . . . . . . 7  |-  f  e. 
_V
78 fvi 5258 . . . . . . 7  |-  ( f  e.  _V  ->  (  _I  `  f )  =  f )
7977, 78ax-mp 7 . . . . . 6  |-  (  _I 
`  f )  =  f
80 eluzelcn 8580 . . . . . . 7  |-  ( f  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  ->  f  e.  CC )
8180adantl 266 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  f  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  f  e.  CC )
8279, 81syl5eqel 2140 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  f  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  (  _I  `  f )  e.  CC )
83 mulcl 7066 . . . . . 6  |-  ( ( f  e.  CC  /\  g  e.  CC )  ->  ( f  x.  g
)  e.  CC )
8483adantl 266 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N
) )  /\  (
f  e.  CC  /\  g  e.  CC )
)  ->  ( f  x.  g )  e.  CC )
8526, 76, 82, 84iseqcl 9387 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  e.  CC )
8612nnnn0d 8292 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  K  e.  NN0 )
8786faccld 9604 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  NN )
8887nncnd 8004 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K )  e.  CC )
8971faccld 9604 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  NN )
9089nncnd 8004 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) )  e.  CC )
9187nnap0d 8035 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  K ) #  0 )
9289nnap0d 8035 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( ! `  ( N  -  K
) ) #  0 )
9385, 88, 90, 91, 92divcanap5d 7866 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( (
( ! `  ( N  -  K )
)  x.  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N ) )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )
942, 75, 933eqtrd 2092 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )
95 simplr 490 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  NN )
9695nnnn0d 8292 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  NN0 )
9796faccld 9604 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( ! `  K )  e.  NN )
9897nncnd 8004 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( ! `  K )  e.  CC )
9997nnap0d 8035 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( ! `  K ) #  0 )
10098, 99div0apd 7838 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  /  ( ! `
 K ) )  =  0 )
101 mulcl 7066 . . . . . 6  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
102101adantl 266 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  (
k  e.  CC  /\  x  e.  CC )
)  ->  ( k  x.  x )  e.  CC )
103 eluzelcn 8580 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  (
( N  -  K
)  +  1 ) )  ->  k  e.  CC )
104103adantl 266 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  k  e.  CC )
10535, 104syl5eqel 2140 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  ( ZZ>= `  ( ( N  -  K )  +  1 ) ) )  ->  (  _I  `  k )  e.  CC )
10628a1i 9 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  CC  e.  _V )
107 simpr 107 . . . . . 6  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  k  e.  CC )
108107mul02d 7461 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  (
0  x.  k )  =  0 )
109107mul01d 7462 . . . . 5  |-  ( ( ( ( N  e. 
NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  /\  k  e.  CC )  ->  (
k  x.  0 )  =  0 )
110 simpr 107 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  -.  K  e.  ( 0 ... N ) )
111 nn0uz 8603 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
11296, 111syl6eleq 2146 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  ( ZZ>= `  0 )
)
113 simpll 489 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  NN0 )
114113nn0zd 8417 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  ZZ )
115 elfz5 8984 . . . . . . . . . . 11  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
116112, 114, 115syl2anc 397 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... N )  <->  K  <_  N ) )
117 nn0re 8248 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
118117ad2antrr 465 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  RR )
119 nnre 7997 . . . . . . . . . . . 12  |-  ( K  e.  NN  ->  K  e.  RR )
120119ad2antlr 466 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  K  e.  RR )
121118, 120subge0d 7600 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  <_  ( N  -  K )  <->  K  <_  N ) )
122116, 121bitr4d 184 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( K  e.  ( 0 ... N )  <->  0  <_  ( N  -  K ) ) )
123110, 122mtbid 607 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  -.  0  <_  ( N  -  K ) )
124 simpl 106 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  N  e.  NN0 )
125124nn0zd 8417 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  N  e.  ZZ )
126 simpr 107 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  K  e.  NN )
127126nnzd 8418 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  K  e.  ZZ )
128125, 127zsubcld 8424 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  -  K
)  e.  ZZ )
129128adantr 265 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  -  K )  e.  ZZ )
130 0z 8313 . . . . . . . . 9  |-  0  e.  ZZ
131 zltnle 8348 . . . . . . . . 9  |-  ( ( ( N  -  K
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( N  -  K )  <  0  <->  -.  0  <_  ( N  -  K ) ) )
132129, 130, 131sylancl 398 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  <  0  <->  -.  0  <_  ( N  -  K
) ) )
133123, 132mpbird 160 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  -  K )  <  0 )
134 zltp1le 8356 . . . . . . . 8  |-  ( ( ( N  -  K
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( N  -  K )  <  0  <->  ( ( N  -  K
)  +  1 )  <_  0 ) )
135129, 130, 134sylancl 398 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  <  0  <->  ( ( N  -  K )  +  1 )  <_ 
0 ) )
136133, 135mpbid 139 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  +  1 )  <_  0 )
137 nn0ge0 8264 . . . . . . 7  |-  ( N  e.  NN0  ->  0  <_  N )
138137ad2antrr 465 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  <_  N )
139 0zd 8314 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  e.  ZZ )
140129peano2zd 8422 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
( N  -  K
)  +  1 )  e.  ZZ )
141 elfz 8982 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  ( ( N  -  K )  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  e.  ( ( ( N  -  K )  +  1 ) ... N )  <-> 
( ( ( N  -  K )  +  1 )  <_  0  /\  0  <_  N ) ) )
142139, 140, 114, 141syl3anc 1146 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
0  e.  ( ( ( N  -  K
)  +  1 ) ... N )  <->  ( (
( N  -  K
)  +  1 )  <_  0  /\  0  <_  N ) ) )
143136, 138, 142mpbir2and 862 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  0  e.  ( ( ( N  -  K )  +  1 ) ... N
) )
144 elex 2583 . . . . . 6  |-  ( N  e.  NN0  ->  N  e. 
_V )
145144ad2antrr 465 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  N  e.  _V )
146 0cn 7077 . . . . . 6  |-  0  e.  CC
147 fvi 5258 . . . . . 6  |-  ( 0  e.  CC  ->  (  _I  `  0 )  =  0 )
148146, 147mp1i 10 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (  _I  `  0 )  =  0 )
149102, 105, 106, 108, 109, 143, 145, 148iseqz 9413 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  =  0 )
150149oveq1d 5555 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  (
(  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) )  =  ( 0  /  ( ! `  K )
) )
151 nnz 8321 . . . . 5  |-  ( K  e.  NN  ->  K  e.  ZZ )
152 bcval3 9619 . . . . 5  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
153151, 152syl3an2 1180 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  NN  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1541533expa 1115 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
155100, 150, 1543eqtr4rd 2099 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  NN )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  ( (  seq (
( N  -  K
)  +  1 ) (  x.  ,  _I  ,  CC ) `  N
)  /  ( ! `
 K ) ) )
156 0zd 8314 . . . 4  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  0  e.  ZZ )
157 fzdcel 9006 . . . 4  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  (
0 ... N ) )
158127, 156, 125, 157syl3anc 1146 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  NN )  -> DECID  K  e.  ( 0 ... N ) )
159 exmiddc 755 . . 3  |-  (DECID  K  e.  ( 0 ... N
)  ->  ( K  e.  ( 0 ... N
)  \/  -.  K  e.  ( 0 ... N
) ) )
160158, 159syl 14 . 2  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( K  e.  ( 0 ... N )  \/  -.  K  e.  ( 0 ... N
) ) )
16194, 155, 160mpjaodan 722 1  |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K
)  =  ( (  seq ( ( N  -  K )  +  1 ) (  x.  ,  _I  ,  CC ) `  N )  /  ( ! `  K ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639  DECID wdc 753    /\ w3a 896    = wceq 1259    e. wcel 1409   _Vcvv 2574   class class class wbr 3792    _I cid 4053   ` cfv 4930  (class class class)co 5540   CCcc 6945   RRcr 6946   0cc0 6947   1c1 6948    + caddc 6950    x. cmul 6952    < clt 7119    <_ cle 7120    - cmin 7245    / cdiv 7725   NNcn 7990   NN0cn0 8239   ZZcz 8302   ZZ>=cuz 8569   ...cfz 8976    seqcseq 9375   !cfa 9593    _C cbc 9615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-if 3360  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-q 8652  df-fz 8977  df-iseq 9376  df-fac 9594  df-bc 9616
This theorem is referenced by:  bcn2  9632
  Copyright terms: Public domain W3C validator