![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibi | Unicode version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ibi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpd 142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm2.43i 48 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ibir 175 pm5.21nii 653 elab3gf 2744 elpwi 3393 elsni 3418 elpr2 3422 elpri 3423 eltpi 3441 snssi 3531 prssi 3545 eloni 4132 limuni2 4154 elxpi 4381 releldmb 4593 relelrnb 4594 funeu 4950 fneu 5028 fvelima 5251 eloprabi 5847 fo2ndf 5873 tfrlem9 5962 ecexr 6170 elqsi 6217 qsel 6242 ecopovsym 6261 ecopovsymg 6264 brdomi 6289 en1uniel 6343 dif1en 6404 ltrnqi 6662 peano2nnnn 7072 peano2nn 8107 eliooord 9016 fzrev3i 9170 elfzole1 9230 elfzolt2 9231 bcp1nk 9775 rere 9879 climcl 10248 climcau 10311 |
Copyright terms: Public domain | W3C validator |