ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccdili Unicode version

Theorem iccdili 9775
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
iccdili.1  |-  A  e.  RR
iccdili.2  |-  B  e.  RR
iccdili.3  |-  R  e.  RR+
iccdili.4  |-  ( A  x.  R )  =  C
iccdili.5  |-  ( B  x.  R )  =  D
Assertion
Ref Expression
iccdili  |-  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) )

Proof of Theorem iccdili
StepHypRef Expression
1 iccdili.1 . . . 4  |-  A  e.  RR
2 iccdili.2 . . . 4  |-  B  e.  RR
3 iccssre 9731 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
41, 2, 3mp2an 422 . . 3  |-  ( A [,] B )  C_  RR
54sseli 3088 . 2  |-  ( X  e.  ( A [,] B )  ->  X  e.  RR )
6 iccdili.3 . . . 4  |-  R  e.  RR+
7 iccdili.4 . . . . . 6  |-  ( A  x.  R )  =  C
8 iccdili.5 . . . . . 6  |-  ( B  x.  R )  =  D
97, 8iccdil 9774 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
101, 2, 9mpanl12 432 . . . 4  |-  ( ( X  e.  RR  /\  R  e.  RR+ )  -> 
( X  e.  ( A [,] B )  <-> 
( X  x.  R
)  e.  ( C [,] D ) ) )
116, 10mpan2 421 . . 3  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
1211biimpd 143 . 2  |-  ( X  e.  RR  ->  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) ) )
135, 12mpcom 36 1  |-  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    C_ wss 3066  (class class class)co 5767   RRcr 7612    x. cmul 7618   RR+crp 9434   [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-rp 9435  df-icc 9671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator