ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssioo2 Unicode version

Theorem iccssioo2 9722
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssioo2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( C [,] D
)  C_  ( A (,) B ) )

Proof of Theorem iccssioo2
StepHypRef Expression
1 eliooxr 9703 . . 3  |-  ( C  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
21adantr 274 . 2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( A  e.  RR*  /\  B  e.  RR* )
)
3 eliooord 9704 . . . 4  |-  ( C  e.  ( A (,) B )  ->  ( A  <  C  /\  C  <  B ) )
43adantr 274 . . 3  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( A  <  C  /\  C  <  B ) )
54simpld 111 . 2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  ->  A  <  C )
6 eliooord 9704 . . . 4  |-  ( D  e.  ( A (,) B )  ->  ( A  <  D  /\  D  <  B ) )
76adantl 275 . . 3  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( A  <  D  /\  D  <  B ) )
87simprd 113 . 2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  ->  D  <  B )
9 iccssioo 9718 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A (,) B ) )
102, 5, 8, 9syl12anc 1214 1  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( C [,] D
)  C_  ( A (,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480    C_ wss 3066   class class class wbr 3924  (class class class)co 5767   RR*cxr 7792    < clt 7793   (,)cioo 9664   [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-ioo 9668  df-icc 9671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator