ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshftf1o Unicode version

Theorem icoshftf1o 9767
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
Assertion
Ref Expression
icoshftf1o  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    F( x)

Proof of Theorem icoshftf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 icoshft 9766 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
x  e.  ( A [,) B )  -> 
( x  +  C
)  e.  ( ( A  +  C ) [,) ( B  +  C ) ) ) )
21ralrimiv 2502 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) )
3 readdcl 7739 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
433adant2 1000 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
5 readdcl 7739 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
653adant1 999 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
7 renegcl 8016 . . . . . . . . 9  |-  ( C  e.  RR  ->  -u C  e.  RR )
873ad2ant3 1004 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u C  e.  RR )
9 icoshft 9766 . . . . . . . 8  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR  /\  -u C  e.  RR )  ->  ( y  e.  ( ( A  +  C ) [,) ( B  +  C )
)  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) ) )
104, 6, 8, 9syl3anc 1216 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
y  e.  ( ( A  +  C ) [,) ( B  +  C ) )  -> 
( y  +  -u C )  e.  ( ( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) ) ) )
1110imp 123 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) )
126rexrd 7808 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR* )
13 icossre 9730 . . . . . . . . . 10  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( A  +  C ) [,) ( B  +  C )
)  C_  RR )
144, 12, 13syl2anc 408 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
) [,) ( B  +  C ) ) 
C_  RR )
1514sselda 3092 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  RR )
1615recnd 7787 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  CC )
17 simpl3 986 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  RR )
1817recnd 7787 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  CC )
1916, 18negsubd 8072 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  =  ( y  -  C
) )
204recnd 7787 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  CC )
21 simp3 983 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
2221recnd 7787 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
2320, 22negsubd 8072 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  ( ( A  +  C )  -  C ) )
24 simp1 981 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2524recnd 7787 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
2625, 22pncand 8067 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  -  C )  =  A )
2723, 26eqtrd 2170 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  A )
286recnd 7787 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  CC )
2928, 22negsubd 8072 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  ( ( B  +  C )  -  C ) )
30 simp2 982 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3130recnd 7787 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
3231, 22pncand 8067 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  -  C )  =  B )
3329, 32eqtrd 2170 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  B )
3427, 33oveq12d 5785 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) )  =  ( A [,) B ) )
3534adantr 274 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( (
( A  +  C
)  +  -u C
) [,) ( ( B  +  C )  +  -u C ) )  =  ( A [,) B ) )
3611, 19, 353eltr3d 2220 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  -  C )  e.  ( A [,) B ) )
37 reueq 2878 . . . . 5  |-  ( ( y  -  C )  e.  ( A [,) B )  <->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3836, 37sylib 121 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3915adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  RR )
4039recnd 7787 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  CC )
41 simpll3 1022 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  RR )
4241recnd 7787 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  CC )
43 simpl1 984 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  A  e.  RR )
44 simpl2 985 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR )
4544rexrd 7808 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR* )
46 icossre 9730 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )
4743, 45, 46syl2anc 408 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( A [,) B )  C_  RR )
4847sselda 3092 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  RR )
4948recnd 7787 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  CC )
5040, 42, 49subadd2d 8085 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
( y  -  C
)  =  x  <->  ( x  +  C )  =  y ) )
51 eqcom 2139 . . . . . 6  |-  ( x  =  ( y  -  C )  <->  ( y  -  C )  =  x )
52 eqcom 2139 . . . . . 6  |-  ( y  =  ( x  +  C )  <->  ( x  +  C )  =  y )
5350, 51, 523bitr4g 222 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
x  =  ( y  -  C )  <->  y  =  ( x  +  C
) ) )
5453reubidva 2611 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( E! x  e.  ( A [,) B ) x  =  ( y  -  C
)  <->  E! x  e.  ( A [,) B ) y  =  ( x  +  C ) ) )
5538, 54mpbid 146 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
5655ralrimiva 2503 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
57 icoshftf1o.1 . . 3  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
5857f1ompt 5564 . 2  |-  ( F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  /\  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) ) )
592, 56, 58sylanbrc 413 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2414   E!wreu 2416    C_ wss 3066    |-> cmpt 3984   -1-1-onto->wf1o 5117  (class class class)co 5767   RRcr 7612    + caddc 7616   RR*cxr 7792    - cmin 7926   -ucneg 7927   [,)cico 9666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-ico 9670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator