ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshftf1o Unicode version

Theorem icoshftf1o 9089
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
Assertion
Ref Expression
icoshftf1o  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Distinct variable groups:    x, A    x, B    x, C
Allowed substitution hint:    F( x)

Proof of Theorem icoshftf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 icoshft 9088 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
x  e.  ( A [,) B )  -> 
( x  +  C
)  e.  ( ( A  +  C ) [,) ( B  +  C ) ) ) )
21ralrimiv 2434 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) ) )
3 readdcl 7161 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  +  C
)  e.  RR )
433adant2 958 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
5 readdcl 7161 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C
)  e.  RR )
653adant1 957 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
7 renegcl 7436 . . . . . . . . 9  |-  ( C  e.  RR  ->  -u C  e.  RR )
873ad2ant3 962 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  -u C  e.  RR )
9 icoshft 9088 . . . . . . . 8  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR  /\  -u C  e.  RR )  ->  ( y  e.  ( ( A  +  C ) [,) ( B  +  C )
)  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) ) )
104, 6, 8, 9syl3anc 1170 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
y  e.  ( ( A  +  C ) [,) ( B  +  C ) )  -> 
( y  +  -u C )  e.  ( ( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) ) ) )
1110imp 122 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  e.  ( ( ( A  +  C )  + 
-u C ) [,) ( ( B  +  C )  +  -u C ) ) )
126rexrd 7230 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR* )
13 icossre 9053 . . . . . . . . . 10  |-  ( ( ( A  +  C
)  e.  RR  /\  ( B  +  C
)  e.  RR* )  ->  ( ( A  +  C ) [,) ( B  +  C )
)  C_  RR )
144, 12, 13syl2anc 403 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
) [,) ( B  +  C ) ) 
C_  RR )
1514sselda 3000 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  RR )
1615recnd 7209 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  y  e.  CC )
17 simpl3 944 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  RR )
1817recnd 7209 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  C  e.  CC )
1916, 18negsubd 7492 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  +  -u C )  =  ( y  -  C
) )
204recnd 7209 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  CC )
21 simp3 941 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
2221recnd 7209 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  CC )
2320, 22negsubd 7492 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  ( ( A  +  C )  -  C ) )
24 simp1 939 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2524recnd 7209 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  CC )
2625, 22pncand 7487 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  -  C )  =  A )
2723, 26eqtrd 2114 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  +  -u C
)  =  A )
286recnd 7209 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  CC )
2928, 22negsubd 7492 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  ( ( B  +  C )  -  C ) )
30 simp2 940 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3130recnd 7209 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  CC )
3231, 22pncand 7487 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  -  C )  =  B )
3329, 32eqtrd 2114 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  C
)  +  -u C
)  =  B )
3427, 33oveq12d 5561 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  +  C )  +  -u C ) [,) (
( B  +  C
)  +  -u C
) )  =  ( A [,) B ) )
3534adantr 270 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( (
( A  +  C
)  +  -u C
) [,) ( ( B  +  C )  +  -u C ) )  =  ( A [,) B ) )
3611, 19, 353eltr3d 2162 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( y  -  C )  e.  ( A [,) B ) )
37 reueq 2790 . . . . 5  |-  ( ( y  -  C )  e.  ( A [,) B )  <->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3836, 37sylib 120 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) x  =  ( y  -  C ) )
3915adantr 270 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  RR )
4039recnd 7209 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  y  e.  CC )
41 simpll3 980 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  RR )
4241recnd 7209 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  C  e.  CC )
43 simpl1 942 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  A  e.  RR )
44 simpl2 943 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR )
4544rexrd 7230 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  B  e.  RR* )
46 icossre 9053 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )
4743, 45, 46syl2anc 403 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( A [,) B )  C_  RR )
4847sselda 3000 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  RR )
4948recnd 7209 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  x  e.  CC )
5040, 42, 49subadd2d 7505 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
( y  -  C
)  =  x  <->  ( x  +  C )  =  y ) )
51 eqcom 2084 . . . . . 6  |-  ( x  =  ( y  -  C )  <->  ( y  -  C )  =  x )
52 eqcom 2084 . . . . . 6  |-  ( y  =  ( x  +  C )  <->  ( x  +  C )  =  y )
5350, 51, 523bitr4g 221 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  ( ( A  +  C ) [,) ( B  +  C )
) )  /\  x  e.  ( A [,) B
) )  ->  (
x  =  ( y  -  C )  <->  y  =  ( x  +  C
) ) )
5453reubidva 2537 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  ( E! x  e.  ( A [,) B ) x  =  ( y  -  C
)  <->  E! x  e.  ( A [,) B ) y  =  ( x  +  C ) ) )
5538, 54mpbid 145 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  y  e.  (
( A  +  C
) [,) ( B  +  C ) ) )  ->  E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
5655ralrimiva 2435 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) )
57 icoshftf1o.1 . . 3  |-  F  =  ( x  e.  ( A [,) B ) 
|->  ( x  +  C
) )
5857f1ompt 5352 . 2  |-  ( F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
)  <->  ( A. x  e.  ( A [,) B
) ( x  +  C )  e.  ( ( A  +  C
) [,) ( B  +  C ) )  /\  A. y  e.  ( ( A  +  C ) [,) ( B  +  C )
) E! x  e.  ( A [,) B
) y  =  ( x  +  C ) ) )
592, 56, 58sylanbrc 408 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F : ( A [,) B ) -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   A.wral 2349   E!wreu 2351    C_ wss 2974    |-> cmpt 3847   -1-1-onto->wf1o 4931  (class class class)co 5543   RRcr 7042    + caddc 7046   RR*cxr 7214    - cmin 7346   -ucneg 7347   [,)cico 8989
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-ico 8993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator