![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: imim1d 74 ancld 318 ancrd 319 anim12d 328 anim1d 329 anim2d 330 orel2 678 pm2.621 699 orim1d 734 orim2d 735 pm2.63 747 pm2.74 754 simprimdc 790 oplem1 917 equsex 1657 equsexd 1658 r19.36av 2506 r19.44av 2514 r19.45av 2515 reuss 3252 opthpr 3572 relop 4514 swoord2 6202 indpi 6594 lelttr 7266 elnnz 8442 ztri3or0 8474 xrlelttr 8952 icossicc 9059 iocssicc 9060 ioossico 9061 bj-exlimmp 10731 |
Copyright terms: Public domain | W3C validator |