ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iexpcyc Unicode version

Theorem iexpcyc 10397
Description: Taking  _i to the  K-th power is the same as using the  K  mod  4 -th power instead, by i4 10395. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )

Proof of Theorem iexpcyc
StepHypRef Expression
1 zq 9418 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  QQ )
2 4z 9084 . . . . . 6  |-  4  e.  ZZ
3 zq 9418 . . . . . 6  |-  ( 4  e.  ZZ  ->  4  e.  QQ )
42, 3ax-mp 5 . . . . 5  |-  4  e.  QQ
5 4pos 8817 . . . . 5  |-  0  <  4
6 modqval 10097 . . . . 5  |-  ( ( K  e.  QQ  /\  4  e.  QQ  /\  0  <  4 )  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
74, 5, 6mp3an23 1307 . . . 4  |-  ( K  e.  QQ  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
81, 7syl 14 . . 3  |-  ( K  e.  ZZ  ->  ( K  mod  4 )  =  ( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )
98oveq2d 5790 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^
( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) ) )
10 4nn 8883 . . . . . . 7  |-  4  e.  NN
11 znq 9416 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  4  e.  NN )  ->  ( K  /  4
)  e.  QQ )
1210, 11mpan2 421 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  /  4 )  e.  QQ )
1312flqcld 10050 . . . . 5  |-  ( K  e.  ZZ  ->  ( |_ `  ( K  / 
4 ) )  e.  ZZ )
14 zmulcl 9107 . . . . 5  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )
152, 13, 14sylancr 410 . . . 4  |-  ( K  e.  ZZ  ->  (
4  x.  ( |_
`  ( K  / 
4 ) ) )  e.  ZZ )
16 ax-icn 7715 . . . . 5  |-  _i  e.  CC
17 iap0 8943 . . . . 5  |-  _i #  0
18 expsubap 10341 . . . . 5  |-  ( ( ( _i  e.  CC  /\  _i #  0 )  /\  ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ ) )  ->  ( _i ^
( K  -  (
4  x.  ( |_
`  ( K  / 
4 ) ) ) ) )  =  ( ( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) ) )
1916, 17, 18mpanl12 432 . . . 4  |-  ( ( K  e.  ZZ  /\  ( 4  x.  ( |_ `  ( K  / 
4 ) ) )  e.  ZZ )  -> 
( _i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) )  =  ( ( _i ^ K )  /  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) ) ) )
2015, 19mpdan 417 . . 3  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) ) ) )
21 expmulzap 10339 . . . . . . . 8  |-  ( ( ( _i  e.  CC  /\  _i #  0 )  /\  ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ ) )  ->  ( _i ^
( 4  x.  ( |_ `  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
2216, 17, 21mpanl12 432 . . . . . . 7  |-  ( ( 4  e.  ZZ  /\  ( |_ `  ( K  /  4 ) )  e.  ZZ )  -> 
( _i ^ (
4  x.  ( |_
`  ( K  / 
4 ) ) ) )  =  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) ) )
232, 13, 22sylancr 410 . . . . . 6  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  ( ( _i
^ 4 ) ^
( |_ `  ( K  /  4 ) ) ) )
24 i4 10395 . . . . . . . 8  |-  ( _i
^ 4 )  =  1
2524oveq1i 5784 . . . . . . 7  |-  ( ( _i ^ 4 ) ^ ( |_ `  ( K  /  4
) ) )  =  ( 1 ^ ( |_ `  ( K  / 
4 ) ) )
26 1exp 10322 . . . . . . . 8  |-  ( ( |_ `  ( K  /  4 ) )  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2713, 26syl 14 . . . . . . 7  |-  ( K  e.  ZZ  ->  (
1 ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2825, 27syl5eq 2184 . . . . . 6  |-  ( K  e.  ZZ  ->  (
( _i ^ 4 ) ^ ( |_
`  ( K  / 
4 ) ) )  =  1 )
2923, 28eqtrd 2172 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ ( 4  x.  ( |_ `  ( K  /  4
) ) ) )  =  1 )
3029oveq2d 5790 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( ( _i ^ K )  /  1
) )
31 expclzap 10318 . . . . . 6  |-  ( ( _i  e.  CC  /\  _i #  0  /\  K  e.  ZZ )  ->  (
_i ^ K )  e.  CC )
3216, 17, 31mp3an12 1305 . . . . 5  |-  ( K  e.  ZZ  ->  (
_i ^ K )  e.  CC )
3332div1d 8540 . . . 4  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  1 )  =  ( _i ^ K ) )
3430, 33eqtrd 2172 . . 3  |-  ( K  e.  ZZ  ->  (
( _i ^ K
)  /  ( _i
^ ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
3520, 34eqtrd 2172 . 2  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  -  ( 4  x.  ( |_ `  ( K  /  4 ) ) ) ) )  =  ( _i ^ K
) )
369, 35eqtrd 2172 1  |-  ( K  e.  ZZ  ->  (
_i ^ ( K  mod  4 ) )  =  ( _i ^ K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621   _ici 7622    x. cmul 7625    < clt 7800    - cmin 7933   # cap 8343    / cdiv 8432   NNcn 8720   4c4 8773   ZZcz 9054   QQcq 9411   |_cfl 10041    mod cmo 10095   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator