ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaco Unicode version

Theorem imaco 4854
Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.)
Assertion
Ref Expression
imaco  |-  ( ( A  o.  B )
" C )  =  ( A " ( B " C ) )

Proof of Theorem imaco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2329 . . 3  |-  ( E. y  e.  ( B
" C ) y A x  <->  E. y
( y  e.  ( B " C )  /\  y A x ) )
2 vex 2577 . . . 4  |-  x  e. 
_V
32elima 4701 . . 3  |-  ( x  e.  ( A "
( B " C
) )  <->  E. y  e.  ( B " C
) y A x )
4 rexcom4 2594 . . . . 5  |-  ( E. z  e.  C  E. y ( z B y  /\  y A x )  <->  E. y E. z  e.  C  ( z B y  /\  y A x ) )
5 r19.41v 2483 . . . . . 6  |-  ( E. z  e.  C  ( z B y  /\  y A x )  <->  ( E. z  e.  C  z B y  /\  y A x ) )
65exbii 1512 . . . . 5  |-  ( E. y E. z  e.  C  ( z B y  /\  y A x )  <->  E. y
( E. z  e.  C  z B y  /\  y A x ) )
74, 6bitri 177 . . . 4  |-  ( E. z  e.  C  E. y ( z B y  /\  y A x )  <->  E. y
( E. z  e.  C  z B y  /\  y A x ) )
82elima 4701 . . . . 5  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  E. z  e.  C  z ( A  o.  B )
x )
9 vex 2577 . . . . . . 7  |-  z  e. 
_V
109, 2brco 4534 . . . . . 6  |-  ( z ( A  o.  B
) x  <->  E. y
( z B y  /\  y A x ) )
1110rexbii 2348 . . . . 5  |-  ( E. z  e.  C  z ( A  o.  B
) x  <->  E. z  e.  C  E. y
( z B y  /\  y A x ) )
128, 11bitri 177 . . . 4  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  E. z  e.  C  E. y
( z B y  /\  y A x ) )
13 vex 2577 . . . . . . 7  |-  y  e. 
_V
1413elima 4701 . . . . . 6  |-  ( y  e.  ( B " C )  <->  E. z  e.  C  z B
y )
1514anbi1i 439 . . . . 5  |-  ( ( y  e.  ( B
" C )  /\  y A x )  <->  ( E. z  e.  C  z B y  /\  y A x ) )
1615exbii 1512 . . . 4  |-  ( E. y ( y  e.  ( B " C
)  /\  y A x )  <->  E. y
( E. z  e.  C  z B y  /\  y A x ) )
177, 12, 163bitr4i 205 . . 3  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  E. y
( y  e.  ( B " C )  /\  y A x ) )
181, 3, 173bitr4ri 206 . 2  |-  ( x  e.  ( ( A  o.  B ) " C )  <->  x  e.  ( A " ( B
" C ) ) )
1918eqriv 2053 1  |-  ( ( A  o.  B )
" C )  =  ( A " ( B " C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    = wceq 1259   E.wex 1397    e. wcel 1409   E.wrex 2324   class class class wbr 3792   "cima 4376    o. ccom 4377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386
This theorem is referenced by:  fvco2  5270
  Copyright terms: Public domain W3C validator