ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadiflem Unicode version

Theorem imadiflem 5006
Description: One direction of imadif 5007. This direction does not require  Fun  `' F. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imadiflem  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )

Proof of Theorem imadiflem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2329 . . . 4  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
2 df-rex 2329 . . . . 5  |-  ( E. x  e.  B  x F y  <->  E. x
( x  e.  B  /\  x F y ) )
32notbii 604 . . . 4  |-  ( -. 
E. x  e.  B  x F y  <->  -.  E. x
( x  e.  B  /\  x F y ) )
4 alnex 1404 . . . . . . 7  |-  ( A. x  -.  ( x  e.  B  /\  x F y )  <->  -.  E. x
( x  e.  B  /\  x F y ) )
5 19.29r 1528 . . . . . . 7  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  A. x  -.  ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
64, 5sylan2br 276 . . . . . 6  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) ) )
7 simpl 106 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x  e.  A  /\  x F y ) )
8 simplr 490 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  x F y )
9 simpr 107 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  -.  ( x  e.  B  /\  x F y ) )
10 ancom 257 . . . . . . . . . . . . 13  |-  ( ( x  e.  B  /\  x F y )  <->  ( x F y  /\  x  e.  B ) )
1110notbii 604 . . . . . . . . . . . 12  |-  ( -.  ( x  e.  B  /\  x F y )  <->  -.  ( x F y  /\  x  e.  B
) )
12 imnan 634 . . . . . . . . . . . 12  |-  ( ( x F y  ->  -.  x  e.  B
)  <->  -.  ( x F y  /\  x  e.  B ) )
1311, 12bitr4i 180 . . . . . . . . . . 11  |-  ( -.  ( x  e.  B  /\  x F y )  <-> 
( x F y  ->  -.  x  e.  B ) )
149, 13sylib 131 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x F y  ->  -.  x  e.  B ) )
158, 14mpd 13 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  -.  x  e.  B )
167, 15, 8jca32 297 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( ( x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
17 eldif 2955 . . . . . . . . . 10  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
1817anbi1i 439 . . . . . . . . 9  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  -.  x  e.  B
)  /\  x F
y ) )
19 anandir 533 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  x F
y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
2018, 19bitri 177 . . . . . . . 8  |-  ( ( x  e.  ( A 
\  B )  /\  x F y )  <->  ( (
x  e.  A  /\  x F y )  /\  ( -.  x  e.  B  /\  x F y ) ) )
2116, 20sylibr 141 . . . . . . 7  |-  ( ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  ( x  e.  ( A  \  B
)  /\  x F
y ) )
2221eximi 1507 . . . . . 6  |-  ( E. x ( ( x  e.  A  /\  x F y )  /\  -.  ( x  e.  B  /\  x F y ) )  ->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
236, 22syl 14 . . . . 5  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x ( x  e.  ( A  \  B )  /\  x F y ) )
24 df-rex 2329 . . . . 5  |-  ( E. x  e.  ( A 
\  B ) x F y  <->  E. x
( x  e.  ( A  \  B )  /\  x F y ) )
2523, 24sylibr 141 . . . 4  |-  ( ( E. x ( x  e.  A  /\  x F y )  /\  -.  E. x ( x  e.  B  /\  x F y ) )  ->  E. x  e.  ( A  \  B ) x F y )
261, 3, 25syl2anb 279 . . 3  |-  ( ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y )  ->  E. x  e.  ( A  \  B ) x F y )
2726ss2abi 3040 . 2  |-  { y  |  ( E. x  e.  A  x F
y  /\  -.  E. x  e.  B  x F
y ) }  C_  { y  |  E. x  e.  ( A  \  B
) x F y }
28 dfima2 4698 . . . 4  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
29 dfima2 4698 . . . 4  |-  ( F
" B )  =  { y  |  E. x  e.  B  x F y }
3028, 29difeq12i 3088 . . 3  |-  ( ( F " A ) 
\  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  \  { y  |  E. x  e.  B  x F y } )
31 difab 3234 . . 3  |-  ( { y  |  E. x  e.  A  x F
y }  \  {
y  |  E. x  e.  B  x F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
3230, 31eqtri 2076 . 2  |-  ( ( F " A ) 
\  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  -.  E. x  e.  B  x F y ) }
33 dfima2 4698 . 2  |-  ( F
" ( A  \  B ) )  =  { y  |  E. x  e.  ( A  \  B ) x F y }
3427, 32, 333sstr4i 3012 1  |-  ( ( F " A ) 
\  ( F " B ) )  C_  ( F " ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101   A.wal 1257   E.wex 1397    e. wcel 1409   {cab 2042   E.wrex 2324    \ cdif 2942    C_ wss 2945   class class class wbr 3792   "cima 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386
This theorem is referenced by:  imadif  5007
  Copyright terms: Public domain W3C validator