ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imain Unicode version

Theorem imain 5009
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain  |-  ( Fun  `' F  ->  ( F
" ( A  i^i  B ) )  =  ( ( F " A
)  i^i  ( F " B ) ) )

Proof of Theorem imain
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imainlem 5008 . . 3  |-  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) )
21a1i 9 . 2  |-  ( Fun  `' F  ->  ( F
" ( A  i^i  B ) )  C_  (
( F " A
)  i^i  ( F " B ) ) )
3 eeanv 1823 . . . . . 6  |-  ( E. x E. z ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  E. z ( z  e.  B  /\  z F y ) ) )
4 simprll 497 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  e.  A )
5 simpr 107 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  x F y )  ->  x F y )
6 simpr 107 . . . . . . . . . . . . . 14  |-  ( ( z  e.  B  /\  z F y )  -> 
z F y )
75, 6anim12i 325 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  -> 
( x F y  /\  z F y ) )
8 funcnveq 4990 . . . . . . . . . . . . . . . . 17  |-  ( Fun  `' F  <->  A. x A. y A. z ( ( x F y  /\  z F y )  ->  x  =  z )
)
98biimpi 117 . . . . . . . . . . . . . . . 16  |-  ( Fun  `' F  ->  A. x A. y A. z ( ( x F y  /\  z F y )  ->  x  =  z ) )
10919.21bi 1466 . . . . . . . . . . . . . . 15  |-  ( Fun  `' F  ->  A. y A. z ( ( x F y  /\  z F y )  ->  x  =  z )
)
111019.21bbi 1467 . . . . . . . . . . . . . 14  |-  ( Fun  `' F  ->  ( ( x F y  /\  z F y )  ->  x  =  z )
)
1211imp 119 . . . . . . . . . . . . 13  |-  ( ( Fun  `' F  /\  ( x F y  /\  z F y ) )  ->  x  =  z )
137, 12sylan2 274 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  =  z )
14 simprrl 499 . . . . . . . . . . . 12  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  z  e.  B )
1513, 14eqeltrd 2130 . . . . . . . . . . 11  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  e.  B )
16 elin 3154 . . . . . . . . . . 11  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
174, 15, 16sylanbrc 402 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x  e.  ( A  i^i  B ) )
18 simprlr 498 . . . . . . . . . 10  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  x F
y )
1917, 18jca 294 . . . . . . . . 9  |-  ( ( Fun  `' F  /\  ( ( x  e.  A  /\  x F y )  /\  (
z  e.  B  /\  z F y ) ) )  ->  ( x  e.  ( A  i^i  B
)  /\  x F
y ) )
2019ex 112 . . . . . . . 8  |-  ( Fun  `' F  ->  ( ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  -> 
( x  e.  ( A  i^i  B )  /\  x F y ) ) )
2120exlimdv 1716 . . . . . . 7  |-  ( Fun  `' F  ->  ( E. z ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  ->  ( x  e.  ( A  i^i  B
)  /\  x F
y ) ) )
2221eximdv 1776 . . . . . 6  |-  ( Fun  `' F  ->  ( E. x E. z ( ( x  e.  A  /\  x F y )  /\  ( z  e.  B  /\  z F y ) )  ->  E. x ( x  e.  ( A  i^i  B
)  /\  x F
y ) ) )
233, 22syl5bir 146 . . . . 5  |-  ( Fun  `' F  ->  ( ( E. x ( x  e.  A  /\  x F y )  /\  E. z ( z  e.  B  /\  z F y ) )  ->  E. x ( x  e.  ( A  i^i  B
)  /\  x F
y ) ) )
24 df-rex 2329 . . . . . 6  |-  ( E. x  e.  A  x F y  <->  E. x
( x  e.  A  /\  x F y ) )
25 df-rex 2329 . . . . . 6  |-  ( E. z  e.  B  z F y  <->  E. z
( z  e.  B  /\  z F y ) )
2624, 25anbi12i 441 . . . . 5  |-  ( ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y )  <->  ( E. x ( x  e.  A  /\  x F y )  /\  E. z ( z  e.  B  /\  z F y ) ) )
27 df-rex 2329 . . . . 5  |-  ( E. x  e.  ( A  i^i  B ) x F y  <->  E. x
( x  e.  ( A  i^i  B )  /\  x F y ) )
2823, 26, 273imtr4g 198 . . . 4  |-  ( Fun  `' F  ->  ( ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y )  ->  E. x  e.  ( A  i^i  B ) x F y ) )
2928ss2abdv 3041 . . 3  |-  ( Fun  `' F  ->  { y  |  ( E. x  e.  A  x F
y  /\  E. z  e.  B  z F
y ) }  C_  { y  |  E. x  e.  ( A  i^i  B
) x F y } )
30 dfima2 4698 . . . . 5  |-  ( F
" A )  =  { y  |  E. x  e.  A  x F y }
31 dfima2 4698 . . . . 5  |-  ( F
" B )  =  { y  |  E. z  e.  B  z F y }
3230, 31ineq12i 3164 . . . 4  |-  ( ( F " A )  i^i  ( F " B ) )  =  ( { y  |  E. x  e.  A  x F y }  i^i  { y  |  E. z  e.  B  z F
y } )
33 inab 3233 . . . 4  |-  ( { y  |  E. x  e.  A  x F
y }  i^i  {
y  |  E. z  e.  B  z F
y } )  =  { y  |  ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y ) }
3432, 33eqtri 2076 . . 3  |-  ( ( F " A )  i^i  ( F " B ) )  =  { y  |  ( E. x  e.  A  x F y  /\  E. z  e.  B  z F y ) }
35 dfima2 4698 . . 3  |-  ( F
" ( A  i^i  B ) )  =  {
y  |  E. x  e.  ( A  i^i  B
) x F y }
3629, 34, 353sstr4g 3014 . 2  |-  ( Fun  `' F  ->  ( ( F " A )  i^i  ( F " B ) )  C_  ( F " ( A  i^i  B ) ) )
372, 36eqssd 2990 1  |-  ( Fun  `' F  ->  ( F
" ( A  i^i  B ) )  =  ( ( F " A
)  i^i  ( F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   {cab 2042   E.wrex 2324    i^i cin 2944    C_ wss 2945   class class class wbr 3792   `'ccnv 4372   "cima 4376   Fun wfun 4924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-fun 4932
This theorem is referenced by:  inpreima  5321
  Copyright terms: Public domain W3C validator