![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi2i | Unicode version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbi2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm5.74i 178 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: imbi12i 237 anidmdbi 390 nan 659 sbcof2 1732 sblimv 1816 sbhb 1858 sblim 1873 2sb6 1902 sbcom2v 1903 2sb6rf 1908 eu1 1967 moabs 1991 mo3h 1995 moanim 2016 2moswapdc 2032 r2alf 2384 r19.21t 2437 rspc2gv 2713 reu2 2781 reu8 2789 2reuswapdc 2795 2rmorex 2797 ssconb 3106 ssin 3195 reldisj 3302 ssundifim 3333 ralm 3353 unissb 3639 repizf2lem 3943 elirr 4292 en2lp 4305 tfi 4331 ssrel 4454 ssrel2 4456 fncnv 4996 fun11 4997 axcaucvglemres 7127 suprzclex 8526 raluz2 8748 supinfneg 8764 infsupneg 8765 infssuzex 10489 bezoutlemmain 10531 isprm2 10643 |
Copyright terms: Public domain | W3C validator |