ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imcl Unicode version

Theorem imcl 9960
Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imcl  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )

Proof of Theorem imcl
StepHypRef Expression
1 imre 9957 . 2  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( -u _i  x.  A
) ) )
2 negicn 7446 . . . 4  |-  -u _i  e.  CC
3 mulcl 7232 . . . 4  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
42, 3mpan 415 . . 3  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
5 recl 9959 . . 3  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( Re `  ( -u _i  x.  A ) )  e.  RR )
64, 5syl 14 . 2  |-  ( A  e.  CC  ->  (
Re `  ( -u _i  x.  A ) )  e.  RR )
71, 6eqeltrd 2159 1  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   ` cfv 4952  (class class class)co 5564   CCcc 7111   RRcr 7112   _ici 7115    x. cmul 7118   -ucneg 7417   Recre 9946   Imcim 9947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-mulrcl 7207  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-precex 7218  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224  ax-pre-mulgt0 7225  ax-pre-mulext 7226
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-reap 7812  df-ap 7819  df-div 7898  df-2 8235  df-cj 9948  df-re 9949  df-im 9950
This theorem is referenced by:  imf  9962  remim  9966  mulreap  9970  cjreb  9972  recj  9973  reneg  9974  readd  9975  remullem  9977  remul2  9979  imcj  9981  imneg  9982  imadd  9983  imsub  9984  immul2  9986  imdivap  9987  cjcj  9989  cjadd  9990  ipcnval  9992  cjmulval  9994  cjmulge0  9995  cjneg  9996  imval2  10000  cnrecnv  10016  imcli  10018  imcld  10045  abs00ap  10167  absrele  10188
  Copyright terms: Public domain W3C validator