![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbida | Unicode version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
impbida.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbida |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 113 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | impbida.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ex 113 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | impbid 127 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: eqrdav 2081 funfvbrb 5312 f1ocnv2d 5735 1stconst 5873 2ndconst 5874 cnvf1o 5877 ersymb 6186 swoer 6200 erth 6216 enen1 6381 enen2 6382 domen1 6383 domen2 6384 fidifsnen 6405 fundmfibi 6448 f1dmvrnfibi 6452 ordiso2 6505 fzsplit2 9145 fseq1p1m1 9187 elfz2nn0 9205 btwnzge0 9382 modqsubdir 9475 zesq 9688 sizeprg 9832 rereb 9888 abslt 10112 absle 10113 maxleastb 10238 maxltsup 10242 iiserex 10315 dvdsadd2b 10387 nn0ob 10452 dfgcd3 10543 dfgcd2 10547 dvdsmulgcd 10558 lcmgcdeq 10609 |
Copyright terms: Public domain | W3C validator |