ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq1 Unicode version

Theorem ineq1 3167
Description: Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.)
Assertion
Ref Expression
ineq1  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )

Proof of Theorem ineq1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2143 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
21anbi1d 453 . . 3  |-  ( A  =  B  ->  (
( x  e.  A  /\  x  e.  C
)  <->  ( x  e.  B  /\  x  e.  C ) ) )
3 elin 3156 . . 3  |-  ( x  e.  ( A  i^i  C )  <->  ( x  e.  A  /\  x  e.  C ) )
4 elin 3156 . . 3  |-  ( x  e.  ( B  i^i  C )  <->  ( x  e.  B  /\  x  e.  C ) )
52, 3, 43bitr4g 221 . 2  |-  ( A  =  B  ->  (
x  e.  ( A  i^i  C )  <->  x  e.  ( B  i^i  C ) ) )
65eqrdv 2080 1  |-  ( A  =  B  ->  ( A  i^i  C )  =  ( B  i^i  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434    i^i cin 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-in 2980
This theorem is referenced by:  ineq2  3168  ineq12  3169  ineq1i  3170  ineq1d  3173  dfrab3ss  3249  intprg  3677  inex1g  3922  reseq1  4634  uzin2  10011  bdinex1g  10877
  Copyright terms: Public domain W3C validator