ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inf00 Unicode version

Theorem inf00 6539
Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
Assertion
Ref Expression
inf00  |- inf ( B ,  (/) ,  R )  =  (/)

Proof of Theorem inf00
StepHypRef Expression
1 df-inf 6493 . 2  |- inf ( B ,  (/) ,  R )  =  sup ( B ,  (/) ,  `' R
)
2 sup00 6511 . 2  |-  sup ( B ,  (/) ,  `' R )  =  (/)
31, 2eqtri 2103 1  |- inf ( B ,  (/) ,  R )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1285   (/)c0 3267   `'ccnv 4390   supcsup 6490  infcinf 6491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-dif 2984  df-in 2988  df-ss 2995  df-nul 3268  df-sn 3422  df-uni 3622  df-sup 6492  df-inf 6493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator