ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infsupneg Unicode version

Theorem infsupneg 8801
Description: If a set of real numbers has a greatest lower bound, the set of the negation of those numbers has a least upper bound. To go in the other direction see supinfneg 8800. (Contributed by Jim Kingdon, 15-Jan-2022.)
Hypotheses
Ref Expression
infsupneg.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infsupneg.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
infsupneg  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
Distinct variable groups:    y, A, z, w, x    ph, y
Allowed substitution hints:    ph( x, z, w)

Proof of Theorem infsupneg
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infsupneg.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
2 breq2 3810 . . . . . . . 8  |-  ( a  =  x  ->  (
y  <  a  <->  y  <  x ) )
32notbid 625 . . . . . . 7  |-  ( a  =  x  ->  ( -.  y  <  a  <->  -.  y  <  x ) )
43ralbidv 2373 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  A  -.  y  <  a  <->  A. y  e.  A  -.  y  <  x ) )
5 breq1 3809 . . . . . . . 8  |-  ( a  =  x  ->  (
a  <  y  <->  x  <  y ) )
65imbi1d 229 . . . . . . 7  |-  ( a  =  x  ->  (
( a  <  y  ->  E. z  e.  A  z  <  y )  <->  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )
76ralbidv 2373 . . . . . 6  |-  ( a  =  x  ->  ( A. y  e.  RR  ( a  <  y  ->  E. z  e.  A  z  <  y )  <->  A. y  e.  RR  ( x  < 
y  ->  E. z  e.  A  z  <  y ) ) )
84, 7anbi12d 457 . . . . 5  |-  ( a  =  x  ->  (
( A. y  e.  A  -.  y  < 
a  /\  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )  <->  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) ) )
98cbvrexv 2583 . . . 4  |-  ( E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) )  <->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
101, 9sylibr 132 . . 3  |-  ( ph  ->  E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) ) )
11 breq1 3809 . . . . . . 7  |-  ( b  =  y  ->  (
b  <  a  <->  y  <  a ) )
1211notbid 625 . . . . . 6  |-  ( b  =  y  ->  ( -.  b  <  a  <->  -.  y  <  a ) )
1312cbvralv 2582 . . . . 5  |-  ( A. b  e.  A  -.  b  <  a  <->  A. y  e.  A  -.  y  <  a )
14 breq1 3809 . . . . . . . . 9  |-  ( c  =  z  ->  (
c  <  b  <->  z  <  b ) )
1514cbvrexv 2583 . . . . . . . 8  |-  ( E. c  e.  A  c  <  b  <->  E. z  e.  A  z  <  b )
1615imbi2i 224 . . . . . . 7  |-  ( ( a  <  b  ->  E. c  e.  A  c  <  b )  <->  ( a  <  b  ->  E. z  e.  A  z  <  b ) )
1716ralbii 2377 . . . . . 6  |-  ( A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b )  <->  A. b  e.  RR  ( a  < 
b  ->  E. z  e.  A  z  <  b ) )
18 breq2 3810 . . . . . . . 8  |-  ( b  =  y  ->  (
a  <  b  <->  a  <  y ) )
19 breq2 3810 . . . . . . . . 9  |-  ( b  =  y  ->  (
z  <  b  <->  z  <  y ) )
2019rexbidv 2374 . . . . . . . 8  |-  ( b  =  y  ->  ( E. z  e.  A  z  <  b  <->  E. z  e.  A  z  <  y ) )
2118, 20imbi12d 232 . . . . . . 7  |-  ( b  =  y  ->  (
( a  <  b  ->  E. z  e.  A  z  <  b )  <->  ( a  <  y  ->  E. z  e.  A  z  <  y ) ) )
2221cbvralv 2582 . . . . . 6  |-  ( A. b  e.  RR  (
a  <  b  ->  E. z  e.  A  z  <  b )  <->  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )
2317, 22bitri 182 . . . . 5  |-  ( A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b )  <->  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) )
2413, 23anbi12i 448 . . . 4  |-  ( ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  <-> 
( A. y  e.  A  -.  y  < 
a  /\  A. y  e.  RR  ( a  < 
y  ->  E. z  e.  A  z  <  y ) ) )
2524rexbii 2378 . . 3  |-  ( E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  <->  E. a  e.  RR  ( A. y  e.  A  -.  y  <  a  /\  A. y  e.  RR  (
a  <  y  ->  E. z  e.  A  z  <  y ) ) )
2610, 25sylibr 132 . 2  |-  ( ph  ->  E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )
27 renegcl 7472 . . . . . 6  |-  ( a  e.  RR  ->  -u a  e.  RR )
2827ad2antlr 473 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  -u a  e.  RR )
29 simplr 497 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  a  e.  RR )
30 simprl 498 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. b  e.  A  -.  b  <  a )
31 elrabi 2755 . . . . . . . . . . . 12  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  y  e.  RR )
32 negeq 7404 . . . . . . . . . . . . . . 15  |-  ( w  =  y  ->  -u w  =  -u y )
3332eleq1d 2151 . . . . . . . . . . . . . 14  |-  ( w  =  y  ->  ( -u w  e.  A  <->  -u y  e.  A ) )
3433elrab3 2759 . . . . . . . . . . . . 13  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u y  e.  A ) )
3534biimpd 142 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A ) )
3631, 35mpcom 36 . . . . . . . . . . 11  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  -u y  e.  A )
37 breq1 3809 . . . . . . . . . . . . 13  |-  ( b  =  -u y  ->  (
b  <  a  <->  -u y  < 
a ) )
3837notbid 625 . . . . . . . . . . . 12  |-  ( b  =  -u y  ->  ( -.  b  <  a  <->  -.  -u y  <  a ) )
3938rspcv 2706 . . . . . . . . . . 11  |-  ( -u y  e.  A  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
4036, 39syl 14 . . . . . . . . . 10  |-  ( y  e.  { w  e.  RR  |  -u w  e.  A }  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
4140adantr 270 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u y  <  a
) )
42 ltnegcon1 7670 . . . . . . . . . . . 12  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( -u a  < 
y  <->  -u y  <  a
) )
4342ancoms 264 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( -u a  < 
y  <->  -u y  <  a
) )
4443notbid 625 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( -.  -u a  <  y  <->  -.  -u y  < 
a ) )
4531, 44sylan 277 . . . . . . . . 9  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( -.  -u a  <  y  <->  -.  -u y  <  a ) )
4641, 45sylibrd 167 . . . . . . . 8  |-  ( ( y  e.  { w  e.  RR  |  -u w  e.  A }  /\  a  e.  RR )  ->  ( A. b  e.  A  -.  b  <  a  ->  -.  -u a  <  y
) )
4746ancoms 264 . . . . . . 7  |-  ( ( a  e.  RR  /\  y  e.  { w  e.  RR  |  -u w  e.  A } )  -> 
( A. b  e.  A  -.  b  < 
a  ->  -.  -u a  <  y ) )
4847ralrimdva 2446 . . . . . 6  |-  ( a  e.  RR  ->  ( A. b  e.  A  -.  b  <  a  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y ) )
4929, 30, 48sylc 61 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y
)
50 nfv 1462 . . . . . . . . . . . 12  |-  F/ c ( ph  /\  a  e.  RR )
51 nfcv 2223 . . . . . . . . . . . . 13  |-  F/_ c RR
52 nfv 1462 . . . . . . . . . . . . . 14  |-  F/ c  a  <  b
53 nfre1 2412 . . . . . . . . . . . . . 14  |-  F/ c E. c  e.  A  c  <  b
5452, 53nfim 1505 . . . . . . . . . . . . 13  |-  F/ c ( a  <  b  ->  E. c  e.  A  c  <  b )
5551, 54nfralya 2409 . . . . . . . . . . . 12  |-  F/ c A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )
5650, 55nfan 1498 . . . . . . . . . . 11  |-  F/ c ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )
57 nfv 1462 . . . . . . . . . . 11  |-  F/ c  y  e.  RR
5856, 57nfan 1498 . . . . . . . . . 10  |-  F/ c ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )
59 nfv 1462 . . . . . . . . . 10  |-  F/ c  y  <  -u a
6058, 59nfan 1498 . . . . . . . . 9  |-  F/ c ( ( ( (
ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )
61 simplr 497 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  A )
62 infsupneg.ss . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  RR )
6362sseld 3008 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( c  e.  A  ->  c  e.  RR ) )
6463ad6antr 482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
( c  e.  A  ->  c  e.  RR ) )
6561, 64mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  RR )
6665renegcld 7587 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u c  e.  RR )
6765recnd 7245 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  e.  CC )
6867negnegd 7513 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u -u c  =  c
)
6968, 61eqeltrd 2159 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u -u c  e.  A
)
70 negeq 7404 . . . . . . . . . . . . 13  |-  ( w  =  -u c  ->  -u w  =  -u -u c )
7170eleq1d 2151 . . . . . . . . . . . 12  |-  ( w  =  -u c  ->  ( -u w  e.  A  <->  -u -u c  e.  A ) )
7271elrab 2758 . . . . . . . . . . 11  |-  ( -u c  e.  { w  e.  RR  |  -u w  e.  A }  <->  ( -u c  e.  RR  /\  -u -u c  e.  A ) )
7366, 69, 72sylanbrc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  -u c  e.  { w  e.  RR  |  -u w  e.  A } )
74 simp-4r 509 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
y  e.  RR )
75 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
c  <  -u y )
7665, 74, 75ltnegcon2d 7729 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  -> 
y  <  -u c )
77 breq2 3810 . . . . . . . . . . 11  |-  ( z  =  -u c  ->  (
y  <  z  <->  y  <  -u c ) )
7877rspcev 2710 . . . . . . . . . 10  |-  ( (
-u c  e.  {
w  e.  RR  |  -u w  e.  A }  /\  y  <  -u c
)  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
)
7973, 76, 78syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a
)  /\  c  e.  A )  /\  c  <  -u y )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z )
80 simpllr 501 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  a  e.  RR )
81 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  y  e.  RR )
82 simplr 497 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )
8380, 81, 82jca31 302 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )
84 ltnegcon2 7671 . . . . . . . . . . . . . 14  |-  ( ( y  e.  RR  /\  a  e.  RR )  ->  ( y  <  -u a  <->  a  <  -u y ) )
8584ancoms 264 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( y  <  -u a  <->  a  <  -u y ) )
8685adantr 270 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
y  <  -u a  <->  a  <  -u y ) )
87 renegcl 7472 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  -u y  e.  RR )
88 breq2 3810 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  (
a  <  b  <->  a  <  -u y ) )
89 breq2 3810 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  -u y  ->  (
c  <  b  <->  c  <  -u y ) )
9089rexbidv 2374 . . . . . . . . . . . . . . . . 17  |-  ( b  =  -u y  ->  ( E. c  e.  A  c  <  b  <->  E. c  e.  A  c  <  -u y ) )
9188, 90imbi12d 232 . . . . . . . . . . . . . . . 16  |-  ( b  =  -u y  ->  (
( a  <  b  ->  E. c  e.  A  c  <  b )  <->  ( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9291rspcv 2706 . . . . . . . . . . . . . . 15  |-  ( -u y  e.  RR  ->  ( A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )  -> 
( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9387, 92syl 14 . . . . . . . . . . . . . 14  |-  ( y  e.  RR  ->  ( A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b )  -> 
( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9493adantl 271 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  y  e.  RR )  ->  ( A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b )  ->  ( a  <  -u y  ->  E. c  e.  A  c  <  -u y ) ) )
9594imp 122 . . . . . . . . . . . 12  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
a  <  -u y  ->  E. c  e.  A  c  <  -u y ) )
9686, 95sylbid 148 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  (
y  <  -u a  ->  E. c  e.  A  c  <  -u y ) )
9796imp 122 . . . . . . . . . 10  |-  ( ( ( ( a  e.  RR  /\  y  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  <  -u a
)  ->  E. c  e.  A  c  <  -u y )
9883, 97sylan 277 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )  ->  E. c  e.  A  c  <  -u y )
9960, 79, 98r19.29af 2502 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  /\  y  <  -u a )  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z )
10099ex 113 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  ( a  <  b  ->  E. c  e.  A  c  <  b ) )  /\  y  e.  RR )  ->  ( y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
) )
101100ralrimiva 2439 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  ->  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
)
102101adantrl 462 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  <  z
) )
103 breq1 3809 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
x  <  y  <->  -u a  < 
y ) )
104103notbid 625 . . . . . . . 8  |-  ( x  =  -u a  ->  ( -.  x  <  y  <->  -.  -u a  <  y ) )
105104ralbidv 2373 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  <->  A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y
) )
106 breq2 3810 . . . . . . . . 9  |-  ( x  =  -u a  ->  (
y  <  x  <->  y  <  -u a ) )
107106imbi1d 229 . . . . . . . 8  |-  ( x  =  -u a  ->  (
( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )  <->  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
108107ralbidv 2373 . . . . . . 7  |-  ( x  =  -u a  ->  ( A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )  <->  A. y  e.  RR  (
y  <  -u a  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
109105, 108anbi12d 457 . . . . . 6  |-  ( x  =  -u a  ->  (
( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
)  <->  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y  /\  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) ) )
110109rspcev 2710 . . . . 5  |-  ( (
-u a  e.  RR  /\  ( A. y  e. 
{ w  e.  RR  |  -u w  e.  A }  -.  -u a  <  y  /\  A. y  e.  RR  ( y  <  -u a  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
11128, 49, 102, 110syl12anc 1168 . . . 4  |-  ( ( ( ph  /\  a  e.  RR )  /\  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) )
112111ex 113 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. c  e.  A  c  <  b ) )  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) ) )
113112rexlimdva 2482 . 2  |-  ( ph  ->  ( E. a  e.  RR  ( A. b  e.  A  -.  b  <  a  /\  A. b  e.  RR  ( a  < 
b  ->  E. c  e.  A  c  <  b ) )  ->  E. x  e.  RR  ( A. y  e.  { w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  {
w  e.  RR  |  -u w  e.  A }
y  <  z )
) ) )
11426, 113mpd 13 1  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } y  < 
z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2353   E.wrex 2354   {crab 2357    C_ wss 2983   class class class wbr 3806   RRcr 7078    < clt 7251   -ucneg 7383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-addcom 7174  ax-addass 7176  ax-distr 7178  ax-i2m1 7179  ax-0id 7182  ax-rnegex 7183  ax-cnre 7185  ax-pre-ltadd 7190
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7253  df-mnf 7254  df-ltxr 7256  df-sub 7384  df-neg 7385
This theorem is referenced by:  infssuzcldc  10538
  Copyright terms: Public domain W3C validator