Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif Unicode version

Theorem inssdif 3216
 Description: Intersection of two classes and class difference. In classical logic this would be an equality. (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
inssdif

Proof of Theorem inssdif
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elndif 3106 . . . 4
21anim2i 334 . . 3
3 elin 3165 . . 3
4 eldif 2991 . . 3
52, 3, 43imtr4i 199 . 2
65ssriv 3012 1
 Colors of variables: wff set class Syntax hints:   wn 3   wa 102   wcel 1434  cvv 2610   cdif 2979   cin 2981   wss 2982 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-dif 2984  df-in 2988  df-ss 2995 This theorem is referenced by:  difdif2ss  3237
 Copyright terms: Public domain W3C validator