Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif0im Unicode version

Theorem inssdif0im 3327
 Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
inssdif0im

Proof of Theorem inssdif0im
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elin 3165 . . . . . 6
21imbi1i 236 . . . . 5
3 imanim 819 . . . . 5
42, 3sylbi 119 . . . 4
5 eldif 2991 . . . . . 6
65anbi2i 445 . . . . 5
7 elin 3165 . . . . 5
8 anass 393 . . . . 5
96, 7, 83bitr4ri 211 . . . 4
104, 9sylnib 634 . . 3
1110alimi 1385 . 2
12 dfss2 2997 . 2
13 eq0 3282 . 2
1411, 12, 133imtr4i 199 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 102  wal 1283   wceq 1285   wcel 1434   cdif 2979   cin 2981   wss 2982  c0 3267 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-dif 2984  df-in 2988  df-ss 2995  df-nul 3268 This theorem is referenced by:  disjdif  3332
 Copyright terms: Public domain W3C validator