ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intasym Unicode version

Theorem intasym 4923
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Distinct variable group:    x, y, R

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 4917 . . 3  |-  Rel  `' R
2 relin2 4658 . . 3  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3 ssrel 4627 . . 3  |-  ( Rel  ( R  i^i  `' R )  ->  (
( R  i^i  `' R )  C_  _I  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) ) )
41, 2, 3mp2b 8 . 2  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  ->  <. x ,  y >.  e.  _I  ) )
5 elin 3259 . . . . 5  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
6 df-br 3930 . . . . . 6  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
7 vex 2689 . . . . . . . 8  |-  x  e. 
_V
8 vex 2689 . . . . . . . 8  |-  y  e. 
_V
97, 8brcnv 4722 . . . . . . 7  |-  ( x `' R y  <->  y R x )
10 df-br 3930 . . . . . . 7  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
119, 10bitr3i 185 . . . . . 6  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
126, 11anbi12i 455 . . . . 5  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
135, 12bitr4i 186 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
14 df-br 3930 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
158ideq 4691 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
1614, 15bitr3i 185 . . . 4  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1713, 16imbi12i 238 . . 3  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<->  ( ( x R y  /\  y R x )  ->  x  =  y ) )
18172albii 1447 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<-> 
A. x A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )
194, 18bitri 183 1  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329    e. wcel 1480    i^i cin 3070    C_ wss 3071   <.cop 3530   class class class wbr 3929    _I cid 4210   `'ccnv 4538   Rel wrel 4544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator