ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin4 Unicode version

Theorem intmin4 3671
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
Assertion
Ref Expression
intmin4  |-  ( A 
C_  |^| { x  | 
ph }  ->  |^| { x  |  ( A  C_  x  /\  ph ) }  =  |^| { x  |  ph } )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem intmin4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssintab 3660 . . . 4  |-  ( A 
C_  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  C_  x ) )
2 simpr 107 . . . . . . . 8  |-  ( ( A  C_  x  /\  ph )  ->  ph )
3 ancr 308 . . . . . . . 8  |-  ( (
ph  ->  A  C_  x
)  ->  ( ph  ->  ( A  C_  x  /\  ph ) ) )
42, 3impbid2 135 . . . . . . 7  |-  ( (
ph  ->  A  C_  x
)  ->  ( ( A  C_  x  /\  ph ) 
<-> 
ph ) )
54imbi1d 224 . . . . . 6  |-  ( (
ph  ->  A  C_  x
)  ->  ( (
( A  C_  x  /\  ph )  ->  y  e.  x )  <->  ( ph  ->  y  e.  x ) ) )
65alimi 1360 . . . . 5  |-  ( A. x ( ph  ->  A 
C_  x )  ->  A. x ( ( ( A  C_  x  /\  ph )  ->  y  e.  x )  <->  ( ph  ->  y  e.  x ) ) )
7 albi 1373 . . . . 5  |-  ( A. x ( ( ( A  C_  x  /\  ph )  ->  y  e.  x )  <->  ( ph  ->  y  e.  x ) )  ->  ( A. x ( ( A 
C_  x  /\  ph )  ->  y  e.  x
)  <->  A. x ( ph  ->  y  e.  x ) ) )
86, 7syl 14 . . . 4  |-  ( A. x ( ph  ->  A 
C_  x )  -> 
( A. x ( ( A  C_  x  /\  ph )  ->  y  e.  x )  <->  A. x
( ph  ->  y  e.  x ) ) )
91, 8sylbi 118 . . 3  |-  ( A 
C_  |^| { x  | 
ph }  ->  ( A. x ( ( A 
C_  x  /\  ph )  ->  y  e.  x
)  <->  A. x ( ph  ->  y  e.  x ) ) )
10 vex 2577 . . . 4  |-  y  e. 
_V
1110elintab 3654 . . 3  |-  ( y  e.  |^| { x  |  ( A  C_  x  /\  ph ) }  <->  A. x
( ( A  C_  x  /\  ph )  -> 
y  e.  x ) )
1210elintab 3654 . . 3  |-  ( y  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  y  e.  x ) )
139, 11, 123bitr4g 216 . 2  |-  ( A 
C_  |^| { x  | 
ph }  ->  (
y  e.  |^| { x  |  ( A  C_  x  /\  ph ) }  <-> 
y  e.  |^| { x  |  ph } ) )
1413eqrdv 2054 1  |-  ( A 
C_  |^| { x  | 
ph }  ->  |^| { x  |  ( A  C_  x  /\  ph ) }  =  |^| { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257    = wceq 1259    e. wcel 1409   {cab 2042    C_ wss 2945   |^|cint 3643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-v 2576  df-in 2952  df-ss 2959  df-int 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator