ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 Unicode version

Theorem intss1 3658
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1  |-  ( A  e.  B  ->  |^| B  C_  A )

Proof of Theorem intss1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . 4  |-  x  e. 
_V
21elint 3649 . . 3  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
3 eleq1 2116 . . . . . 6  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
4 eleq2 2117 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
53, 4imbi12d 227 . . . . 5  |-  ( y  =  A  ->  (
( y  e.  B  ->  x  e.  y )  <-> 
( A  e.  B  ->  x  e.  A ) ) )
65spcgv 2657 . . . 4  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  ( A  e.  B  ->  x  e.  A ) ) )
76pm2.43a 49 . . 3  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  x  e.  A ) )
82, 7syl5bi 145 . 2  |-  ( A  e.  B  ->  (
x  e.  |^| B  ->  x  e.  A ) )
98ssrdv 2979 1  |-  ( A  e.  B  ->  |^| B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1257    = wceq 1259    e. wcel 1409    C_ wss 2945   |^|cint 3643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2952  df-ss 2959  df-int 3644
This theorem is referenced by:  intminss  3668  intmin3  3670  intab  3672  int0el  3673  trintssm  3898  inteximm  3931  onnmin  4320  peano5  4349  peano5nnnn  7024  peano5nni  7993  dfuzi  8407  bj-intabssel  10315  bj-intabssel1  10316  peano5setOLD  10452
  Copyright terms: Public domain W3C validator