Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssuni2m Unicode version

Theorem intssuni2m 3681
 Description: Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
intssuni2m
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem intssuni2m
StepHypRef Expression
1 intssunim 3679 . 2
2 uniss 3643 . 2
31, 2sylan9ssr 3023 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102  wex 1422   wcel 1434   wss 2983  cuni 3622  cint 3657 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2613  df-in 2989  df-ss 2996  df-uni 3623  df-int 3658 This theorem is referenced by:  rintm  3786  onintonm  4290
 Copyright terms: Public domain W3C validator