ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intun Unicode version

Theorem intun 3674
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun  |-  |^| ( A  u.  B )  =  ( |^| A  i^i  |^| B )

Proof of Theorem intun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1386 . . . 4  |-  ( A. y ( ( y  e.  A  ->  x  e.  y )  /\  (
y  e.  B  ->  x  e.  y )
)  <->  ( A. y
( y  e.  A  ->  x  e.  y )  /\  A. y ( y  e.  B  ->  x  e.  y )
) )
2 elun 3112 . . . . . . 7  |-  ( y  e.  ( A  u.  B )  <->  ( y  e.  A  \/  y  e.  B ) )
32imbi1i 231 . . . . . 6  |-  ( ( y  e.  ( A  u.  B )  ->  x  e.  y )  <->  ( ( y  e.  A  \/  y  e.  B
)  ->  x  e.  y ) )
4 jaob 641 . . . . . 6  |-  ( ( ( y  e.  A  \/  y  e.  B
)  ->  x  e.  y )  <->  ( (
y  e.  A  ->  x  e.  y )  /\  ( y  e.  B  ->  x  e.  y ) ) )
53, 4bitri 177 . . . . 5  |-  ( ( y  e.  ( A  u.  B )  ->  x  e.  y )  <->  ( ( y  e.  A  ->  x  e.  y )  /\  ( y  e.  B  ->  x  e.  y ) ) )
65albii 1375 . . . 4  |-  ( A. y ( y  e.  ( A  u.  B
)  ->  x  e.  y )  <->  A. y
( ( y  e.  A  ->  x  e.  y )  /\  (
y  e.  B  ->  x  e.  y )
) )
7 vex 2577 . . . . . 6  |-  x  e. 
_V
87elint 3649 . . . . 5  |-  ( x  e.  |^| A  <->  A. y
( y  e.  A  ->  x  e.  y ) )
97elint 3649 . . . . 5  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
108, 9anbi12i 441 . . . 4  |-  ( ( x  e.  |^| A  /\  x  e.  |^| B
)  <->  ( A. y
( y  e.  A  ->  x  e.  y )  /\  A. y ( y  e.  B  ->  x  e.  y )
) )
111, 6, 103bitr4i 205 . . 3  |-  ( A. y ( y  e.  ( A  u.  B
)  ->  x  e.  y )  <->  ( x  e.  |^| A  /\  x  e.  |^| B ) )
127elint 3649 . . 3  |-  ( x  e.  |^| ( A  u.  B )  <->  A. y
( y  e.  ( A  u.  B )  ->  x  e.  y ) )
13 elin 3154 . . 3  |-  ( x  e.  ( |^| A  i^i  |^| B )  <->  ( x  e.  |^| A  /\  x  e.  |^| B ) )
1411, 12, 133bitr4i 205 . 2  |-  ( x  e.  |^| ( A  u.  B )  <->  x  e.  ( |^| A  i^i  |^| B ) )
1514eqriv 2053 1  |-  |^| ( A  u.  B )  =  ( |^| A  i^i  |^| B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    \/ wo 639   A.wal 1257    = wceq 1259    e. wcel 1409    u. cun 2943    i^i cin 2944   |^|cint 3643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950  df-in 2952  df-int 3644
This theorem is referenced by:  intunsn  3681  riinint  4621
  Copyright terms: Public domain W3C validator