ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdisj Unicode version

Theorem invdisj 3787
Description: If there is a function  C (
y ) such that  C (
y )  =  x for all  y  e.  B
( x ), then the sets  B ( x ) for distinct  x  e.  A are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
invdisj  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  -> Disj  x  e.  A  B )
Distinct variable groups:    x, y    y, A    y, B    x, C
Allowed substitution hints:    A( x)    B( x)    C( y)

Proof of Theorem invdisj
StepHypRef Expression
1 nfra2xy 2381 . . 3  |-  F/ y A. x  e.  A  A. y  e.  B  C  =  x
2 df-ral 2328 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  <->  A. x ( x  e.  A  ->  A. y  e.  B  C  =  x ) )
3 rsp 2386 . . . . . . . . 9  |-  ( A. y  e.  B  C  =  x  ->  ( y  e.  B  ->  C  =  x ) )
4 eqcom 2058 . . . . . . . . 9  |-  ( C  =  x  <->  x  =  C )
53, 4syl6ib 154 . . . . . . . 8  |-  ( A. y  e.  B  C  =  x  ->  ( y  e.  B  ->  x  =  C ) )
65imim2i 12 . . . . . . 7  |-  ( ( x  e.  A  ->  A. y  e.  B  C  =  x )  ->  ( x  e.  A  ->  ( y  e.  B  ->  x  =  C ) ) )
76impd 246 . . . . . 6  |-  ( ( x  e.  A  ->  A. y  e.  B  C  =  x )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  x  =  C ) )
87alimi 1360 . . . . 5  |-  ( A. x ( x  e.  A  ->  A. y  e.  B  C  =  x )  ->  A. x
( ( x  e.  A  /\  y  e.  B )  ->  x  =  C ) )
92, 8sylbi 118 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  ->  A. x
( ( x  e.  A  /\  y  e.  B )  ->  x  =  C ) )
10 mo2icl 2743 . . . 4  |-  ( A. x ( ( x  e.  A  /\  y  e.  B )  ->  x  =  C )  ->  E* x ( x  e.  A  /\  y  e.  B ) )
119, 10syl 14 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  ->  E* x
( x  e.  A  /\  y  e.  B
) )
121, 11alrimi 1431 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  ->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
13 dfdisj2 3775 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
1412, 13sylibr 141 1  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  -> Disj  x  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101   A.wal 1257    = wceq 1259    e. wcel 1409   E*wmo 1917   A.wral 2323  Disj wdisj 3773
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rmo 2331  df-v 2576  df-disj 3774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator