ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iordsmo Unicode version

Theorem iordsmo 5946
Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011.)
Hypothesis
Ref Expression
iordsmo.1  |-  Ord  A
Assertion
Ref Expression
iordsmo  |-  Smo  (  _I  |`  A )

Proof of Theorem iordsmo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresi 5047 . . 3  |-  (  _I  |`  A )  Fn  A
2 rnresi 4712 . . . 4  |-  ran  (  _I  |`  A )  =  A
3 iordsmo.1 . . . . 5  |-  Ord  A
4 ordsson 4244 . . . . 5  |-  ( Ord 
A  ->  A  C_  On )
53, 4ax-mp 7 . . . 4  |-  A  C_  On
62, 5eqsstri 3030 . . 3  |-  ran  (  _I  |`  A )  C_  On
7 df-f 4936 . . 3  |-  ( (  _I  |`  A ) : A --> On  <->  ( (  _I  |`  A )  Fn  A  /\  ran  (  _I  |`  A )  C_  On ) )
81, 6, 7mpbir2an 884 . 2  |-  (  _I  |`  A ) : A --> On
9 fvresi 5388 . . . . 5  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
109adantr 270 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 x )  =  x )
11 fvresi 5388 . . . . 5  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
1211adantl 271 . . . 4  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( (  _I  |`  A ) `
 y )  =  y )
1310, 12eleq12d 2150 . . 3  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y )  <->  x  e.  y ) )
1413biimprd 156 . 2  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  y  ->  ( (  _I  |`  A ) `  x
)  e.  ( (  _I  |`  A ) `  y ) ) )
15 dmresi 4691 . 2  |-  dom  (  _I  |`  A )  =  A
168, 3, 14, 15issmo 5937 1  |-  Smo  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1285    e. wcel 1434    C_ wss 2974    _I cid 4051   Ord word 4125   Oncon0 4126   ran crn 4372    |` cres 4373    Fn wfn 4927   -->wf 4928   ` cfv 4932   Smo wsmo 5934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-smo 5935
This theorem is referenced by:  smo0  5947
  Copyright terms: Public domain W3C validator