ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotanul Unicode version

Theorem iotanul 4932
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one  x that satisfies  ph. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )

Proof of Theorem iotanul
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 1946 . . 3  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 dfiota2 4918 . . . 4  |-  ( iota
x ph )  =  U. { z  |  A. x ( ph  <->  x  =  z ) }
3 alnex 1429 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  <->  -.  E. z A. x
( ph  <->  x  =  z
) )
4 ax-in2 578 . . . . . . . . . 10  |-  ( -. 
A. x ( ph  <->  x  =  z )  -> 
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
54alimi 1385 . . . . . . . . 9  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  A. z ( A. x ( ph  <->  x  =  z )  ->  -.  z  =  z )
)
6 ss2ab 3071 . . . . . . . . 9  |-  ( { z  |  A. x
( ph  <->  x  =  z
) }  C_  { z  |  -.  z  =  z }  <->  A. z
( A. x (
ph 
<->  x  =  z )  ->  -.  z  =  z ) )
75, 6sylibr 132 . . . . . . . 8  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  { z  |  -.  z  =  z } )
8 dfnul2 3269 . . . . . . . 8  |-  (/)  =  {
z  |  -.  z  =  z }
97, 8syl6sseqr 3055 . . . . . . 7  |-  ( A. z  -.  A. x (
ph 
<->  x  =  z )  ->  { z  | 
A. x ( ph  <->  x  =  z ) } 
C_  (/) )
103, 9sylbir 133 . . . . . 6  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  { z  |  A. x ( ph  <->  x  =  z ) } 
C_  (/) )
1110unissd 3645 . . . . 5  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  U. (/) )
12 uni0 3648 . . . . 5  |-  U. (/)  =  (/)
1311, 12syl6sseq 3054 . . . 4  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  U. { z  |  A. x (
ph 
<->  x  =  z ) }  C_  (/) )
142, 13syl5eqss 3052 . . 3  |-  ( -. 
E. z A. x
( ph  <->  x  =  z
)  ->  ( iota x ph )  C_  (/) )
151, 14sylnbi 636 . 2  |-  ( -.  E! x ph  ->  ( iota x ph )  C_  (/) )
16 ss0 3300 . 2  |-  ( ( iota x ph )  C_  (/)  ->  ( iota x ph )  =  (/) )
1715, 16syl 14 1  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103   A.wal 1283    = wceq 1285   E.wex 1422   E!weu 1943   {cab 2069    C_ wss 2982   (/)c0 3267   U.cuni 3621   iotacio 4915
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-dif 2984  df-in 2988  df-ss 2995  df-nul 3268  df-sn 3422  df-uni 3622  df-iota 4917
This theorem is referenced by:  tz6.12-2  5220  0fv  5260  riotaund  5553
  Copyright terms: Public domain W3C validator