ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqvalt Unicode version

Theorem iseqvalt 9584
Description: Value of the sequence builder function. (Contributed by Jim Kingdon, 27-Apr-2022.)
Hypotheses
Ref Expression
iseqvalt.m  |-  ( ph  ->  M  e.  ZZ )
iseqvalt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
iseqvalt.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqvalt.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqvalt.t  |-  ( ph  ->  S  C_  T )
Assertion
Ref Expression
iseqvalt  |-  ( ph  ->  seq M (  .+  ,  F ,  T )  =  ran  R )
Distinct variable groups:    w,  .+ , x, y, z    w, F, x, y, z    w, M, x, y, z    w, R, x, y, z    w, S, x, y, z    x, T, y    ph, w, x, y, z
Allowed substitution hints:    T( z, w)

Proof of Theorem iseqvalt
Dummy variables  a  b  k  c  n  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqvalt.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5229 . . . . . . . 8  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2151 . . . . . . 7  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 iseqvalt.f . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
54ralrimiva 2439 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( F `  x )  e.  S )
6 uzid 8766 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
83, 5, 7rspcdva 2715 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  S )
9 iseqvalt.t . . . . . 6  |-  ( ph  ->  S  C_  T )
10 iseqvalt.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
114, 10iseqovex 9581 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
12 iseqvalt.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
131, 8, 9, 11, 12frecuzrdgrclt 9549 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  M )  X.  S ) )
14 ffn 5097 . . . . 5  |-  ( R : om --> ( (
ZZ>= `  M )  X.  S )  ->  R  Fn  om )
1513, 14syl 14 . . . 4  |-  ( ph  ->  R  Fn  om )
16 1st2nd2 5852 . . . . . . . . . . . 12  |-  ( u  e.  ( ( ZZ>= `  M )  X.  S
)  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
1716adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
1817fveq2d 5233 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  <. ( 1st `  u ) ,  ( 2nd `  u
) >. ) )
19 df-ov 5566 . . . . . . . . . 10  |-  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
2018, 19syl6eqr 2133 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) ) )
21 xp1st 5843 . . . . . . . . . . 11  |-  ( u  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 1st `  u )  e.  (
ZZ>= `  M ) )
2221adantl 271 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( 1st `  u )  e.  (
ZZ>= `  M ) )
239adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  S  C_  T
)
24 xp2nd 5844 . . . . . . . . . . . 12  |-  ( u  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 2nd `  u )  e.  S
)
2524adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( 2nd `  u )  e.  S
)
2623, 25sseldd 3009 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( 2nd `  u )  e.  T
)
27 peano2uz 8804 . . . . . . . . . . . 12  |-  ( ( 1st `  u )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  M ) )
2822, 27syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  M ) )
2910caovclg 5704 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
3029adantlr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
31 fveq2 5229 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( 1st `  u )  +  1 )  ->  ( F `  x )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
3231eleq1d 2151 . . . . . . . . . . . . 13  |-  ( x  =  ( ( 1st `  u )  +  1 )  ->  ( ( F `  x )  e.  S  <->  ( F `  ( ( 1st `  u
)  +  1 ) )  e.  S ) )
335adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  A. x  e.  ( ZZ>= `  M )
( F `  x
)  e.  S )
3432, 33, 28rspcdva 2715 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( F `  ( ( 1st `  u
)  +  1 ) )  e.  S )
3530, 25, 34caovcld 5705 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )  e.  S )
36 opelxpi 4422 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  u
)  +  1 )  e.  ( ZZ>= `  M
)  /\  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )  e.  S )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u ) 
.+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )
3728, 35, 36syl2anc 403 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )
38 oveq1 5570 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  u
)  ->  ( x  +  1 )  =  ( ( 1st `  u
)  +  1 ) )
3938fveq2d 5233 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  u
)  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
4039oveq2d 5579 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  u
)  ->  ( y  .+  ( F `  (
x  +  1 ) ) )  =  ( y  .+  ( F `
 ( ( 1st `  u )  +  1 ) ) ) )
4138, 40opeq12d 3598 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  u
)  ->  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( ( 1st `  u
)  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  u )  +  1 ) ) ) >. )
42 oveq1 5570 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  u
)  ->  ( y  .+  ( F `  (
( 1st `  u
)  +  1 ) ) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
4342opeq2d 3597 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  u
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >. )
44 eqid 2083 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )
4541, 43, 44ovmpt2g 5686 . . . . . . . . . 10  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e.  T  /\  <. (
( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>.  e.  ( ( ZZ>= `  M )  X.  S
) )  ->  (
( 1st `  u
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
4622, 26, 37, 45syl3anc 1170 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ( 2nd `  u ) )  = 
<. ( ( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
4720, 46eqtrd 2115 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  <. (
( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
4847, 37eqeltrd 2159 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S ) )
4948ralrimiva 2439 . . . . . 6  |-  ( ph  ->  A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S ) )
50 opelxpi 4422 . . . . . . 7  |-  ( ( M  e.  ( ZZ>= `  M )  /\  ( F `  M )  e.  S )  ->  <. M , 
( F `  M
) >.  e.  ( (
ZZ>= `  M )  X.  S ) )
517, 8, 50syl2anc 403 . . . . . 6  |-  ( ph  -> 
<. M ,  ( F `
 M ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
5249, 51jca 300 . . . . 5  |-  ( ph  ->  ( A. u  e.  ( ( ZZ>= `  M
)  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  S )  /\  <. M ,  ( F `  M )
>.  e.  ( ( ZZ>= `  M )  X.  S
) ) )
53 frecfcl 6074 . . . . 5  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S ) )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) : om --> ( ( ZZ>= `  M
)  X.  S ) )
54 ffn 5097 . . . . 5  |-  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) : om --> ( ( ZZ>= `  M
)  X.  S )  -> frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  Fn  om )
5552, 53, 543syl 17 . . . 4  |-  ( ph  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  Fn  om )
56 fveq2 5229 . . . . . . . 8  |-  ( c  =  (/)  ->  ( R `
 c )  =  ( R `  (/) ) )
57 fveq2 5229 . . . . . . . 8  |-  ( c  =  (/)  ->  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) ) )
5856, 57eqeq12d 2097 . . . . . . 7  |-  ( c  =  (/)  ->  ( ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  c )  <->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) ) ) )
5958imbi2d 228 . . . . . 6  |-  ( c  =  (/)  ->  ( (
ph  ->  ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) ) ) ) )
60 fveq2 5229 . . . . . . . 8  |-  ( c  =  k  ->  ( R `  c )  =  ( R `  k ) )
61 fveq2 5229 . . . . . . . 8  |-  ( c  =  k  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) )
6260, 61eqeq12d 2097 . . . . . . 7  |-  ( c  =  k  ->  (
( R `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
6362imbi2d 228 . . . . . 6  |-  ( c  =  k  ->  (
( ph  ->  ( R `
 c )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  k
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) ) )
64 fveq2 5229 . . . . . . . 8  |-  ( c  =  suc  k  -> 
( R `  c
)  =  ( R `
 suc  k )
)
65 fveq2 5229 . . . . . . . 8  |-  ( c  =  suc  k  -> 
(frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) )
6664, 65eqeq12d 2097 . . . . . . 7  |-  ( c  =  suc  k  -> 
( ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) )
6766imbi2d 228 . . . . . 6  |-  ( c  =  suc  k  -> 
( ( ph  ->  ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  c ) )  <->  ( ph  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
68 fveq2 5229 . . . . . . . 8  |-  ( c  =  n  ->  ( R `  c )  =  ( R `  n ) )
69 fveq2 5229 . . . . . . . 8  |-  ( c  =  n  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) )
7068, 69eqeq12d 2097 . . . . . . 7  |-  ( c  =  n  ->  (
( R `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) )
7170imbi2d 228 . . . . . 6  |-  ( c  =  n  ->  (
( ph  ->  ( R `
 c )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  n
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) ) )
7212fveq1i 5230 . . . . . . . 8  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )
73 frec0g 6066 . . . . . . . . 9  |-  ( <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7451, 73syl 14 . . . . . . . 8  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7572, 74syl5eq 2127 . . . . . . 7  |-  ( ph  ->  ( R `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
76 frec0g 6066 . . . . . . . 8  |-  ( <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7751, 76syl 14 . . . . . . 7  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
7875, 77eqtr4d 2118 . . . . . 6  |-  ( ph  ->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) ) )
7913ad2antlr 473 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  R : om --> ( ( ZZ>= `  M )  X.  S
) )
80 simpll 496 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  k  e.  om )
8179, 80ffvelrnd 5355 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  e.  ( ( ZZ>= `  M
)  X.  S ) )
82 xp1st 5843 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 1st `  ( R `  k
) )  e.  (
ZZ>= `  M ) )
8381, 82syl 14 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 1st `  ( R `  k ) )  e.  ( ZZ>= `  M )
)
849ad2antlr 473 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  S  C_  T )
85 xp2nd 5844 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( 2nd `  ( R `  k
) )  e.  S
)
8681, 85syl 14 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 2nd `  ( R `  k ) )  e.  S )
8784, 86sseldd 3009 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 2nd `  ( R `  k ) )  e.  T )
8829adantll 460 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  (
a  e.  S  /\  b  e.  S )
)  ->  ( a  .+  b )  e.  S
)
8988adantlr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( k  e. 
om  /\  ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  k ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
90 fveq2 5229 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( ( 1st `  ( R `  k
) )  +  1 )  ->  ( F `  a )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
9190eleq1d 2151 . . . . . . . . . . . . . . 15  |-  ( a  =  ( ( 1st `  ( R `  k
) )  +  1 )  ->  ( ( F `  a )  e.  S  <->  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) )  e.  S ) )
92 fveq2 5229 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
9392eleq1d 2151 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  (
( F `  x
)  e.  S  <->  ( F `  a )  e.  S
) )
9493cbvralv 2582 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  ( ZZ>= `  M ) ( F `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  M ) ( F `  a )  e.  S )
955, 94sylib 120 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. a  e.  (
ZZ>= `  M ) ( F `  a )  e.  S )
9695ad2antlr 473 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. a  e.  ( ZZ>= `  M )
( F `  a
)  e.  S )
97 peano2uz 8804 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  ( R `
 k ) )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  ( R `  k ) )  +  1 )  e.  (
ZZ>= `  M ) )
9883, 97syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
)  +  1 )  e.  ( ZZ>= `  M
) )
9991, 96, 98rspcdva 2715 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) )  e.  S )
10089, 86, 99caovcld 5705 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  S
)
101 oveq1 5570 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( 1st `  ( R `  k )
)  ->  ( z  +  1 )  =  ( ( 1st `  ( R `  k )
)  +  1 ) )
102101fveq2d 5233 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 1st `  ( R `  k )
)  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
103102oveq2d 5579 . . . . . . . . . . . . . 14  |-  ( z  =  ( 1st `  ( R `  k )
)  ->  ( w  .+  ( F `  (
z  +  1 ) ) )  =  ( w  .+  ( F `
 ( ( 1st `  ( R `  k
) )  +  1 ) ) ) )
104 oveq1 5570 . . . . . . . . . . . . . 14  |-  ( w  =  ( 2nd `  ( R `  k )
)  ->  ( w  .+  ( F `  (
( 1st `  ( R `  k )
)  +  1 ) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
105 eqid 2083 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
106103, 104, 105ovmpt2g 5686 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e.  S  /\  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  S
)  ->  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k )
) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
10783, 86, 100, 106syl3anc 1170 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
108107opeq2d 3597 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
109107, 100eqeltrd 2159 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) )  e.  S )
110 opelxpi 4422 . . . . . . . . . . . 12  |-  ( ( ( ( 1st `  ( R `  k )
)  +  1 )  e.  ( ZZ>= `  M
)  /\  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k )
) )  e.  S
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
11198, 109, 110syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
112108, 111eqeltrrd 2160 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>.  e.  ( ( ZZ>= `  M )  X.  S
) )
113 oveq1 5570 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( x  +  1 )  =  ( ( 1st `  ( R `  k )
)  +  1 ) )
114113fveq2d 5233 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
115114oveq2d 5579 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( y  .+  ( F `  (
x  +  1 ) ) )  =  ( y  .+  ( F `
 ( ( 1st `  ( R `  k
) )  +  1 ) ) ) )
116113, 115opeq12d 3598 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) ) >. )
117 oveq1 5570 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( y  .+  ( F `  (
( 1st `  ( R `  k )
)  +  1 ) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
118117opeq2d 3597 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
119116, 118, 44ovmpt2g 5686 . . . . . . . . . 10  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e.  T  /\  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>.  e.  ( ( ZZ>= `  M )  X.  S
) )  ->  (
( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>. )
12083, 87, 112, 119syl3anc 1170 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>. )
12149ad2antlr 473 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. u  e.  ( ( ZZ>= `  M
)  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  S ) )
12251ad2antlr 473 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. M , 
( F `  M
) >.  e.  ( (
ZZ>= `  M )  X.  S ) )
123 frecsuc 6076 . . . . . . . . . . . 12  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  S )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  /\  k  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
124121, 122, 80, 123syl3anc 1170 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
125 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )
126125fveq2d 5233 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
127124, 126eqtr4d 2118 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) ) )
128 1st2nd2 5852 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  S
)  ->  ( R `  k )  =  <. ( 1st `  ( R `
 k ) ) ,  ( 2nd `  ( R `  k )
) >. )
12981, 128syl 14 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  =  <. ( 1st `  ( R `  k )
) ,  ( 2nd `  ( R `  k
) ) >. )
130129fveq2d 5233 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. ) )
131 df-ov 5566 . . . . . . . . . . 11  |-  ( ( 1st `  ( R `
 k ) ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. )
132130, 131syl6eqr 2133 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) ) )
133127, 132eqtrd 2115 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) ) )
13412fveq1i 5230 . . . . . . . . . . . . . . 15  |-  ( R `
 suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  suc  k )
13517fveq2d 5233 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. ) )
136 df-ov 5566 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  u
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
137135, 136syl6eqr 2133 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  ( ( 1st `  u
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  u
) ) )
138 oveq1 5570 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  =  ( 1st `  u
)  ->  ( z  +  1 )  =  ( ( 1st `  u
)  +  1 ) )
139138fveq2d 5233 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  =  ( 1st `  u
)  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
140139oveq2d 5579 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  =  ( 1st `  u
)  ->  ( w  .+  ( F `  (
z  +  1 ) ) )  =  ( w  .+  ( F `
 ( ( 1st `  u )  +  1 ) ) ) )
141 oveq1 5570 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( 2nd `  u
)  ->  ( w  .+  ( F `  (
( 1st `  u
)  +  1 ) ) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
142140, 141, 105ovmpt2g 5686 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e.  S  /\  ( ( 2nd `  u ) 
.+  ( F `  ( ( 1st `  u
)  +  1 ) ) )  e.  S
)  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
14322, 25, 35, 142syl3anc 1170 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
144143, 35eqeltrd 2159 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  e.  S
)
145 opelxpi 4422 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( 1st `  u
)  +  1 )  e.  ( ZZ>= `  M
)  /\  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  e.  S
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
14628, 144, 145syl2anc 403 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )
147 oveq1 5570 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  ( 1st `  u
)  ->  ( x
( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y ) )
14838, 147opeq12d 3598 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( 1st `  u
)  ->  <. ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )
149 oveq2 5571 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  ( 2nd `  u
)  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) )
150149opeq2d 3597 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( 2nd `  u
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
151 eqid 2083 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
152148, 150, 151ovmpt2g 5686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e.  T  /\  <. (
( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
15322, 26, 146, 152syl3anc 1170 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
154137, 153eqtrd 2115 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
155154, 146eqeltrd 2159 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  S ) )
156155ralrimiva 2439 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  S ) )
157156ad2antlr 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. u  e.  ( ( ZZ>= `  M
)  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  S ) )
158 frecsuc 6076 . . . . . . . . . . . . . . . 16  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  S ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  S )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  S )  /\  k  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
159157, 122, 80, 158syl3anc 1170 . . . . . . . . . . . . . . 15  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
160134, 159syl5eq 2127 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
16112fveq1i 5230 . . . . . . . . . . . . . . 15  |-  ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
)
162161fveq2i 5232 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  ( R `  k
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) )
163160, 162syl6eqr 2133 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  ( R `
 k ) ) )
164129fveq2d 5233 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. ) )
165163, 164eqtrd 2115 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  <. ( 1st `  ( R `  k ) ) ,  ( 2nd `  ( R `  k )
) >. ) )
166 df-ov 5566 . . . . . . . . . . . 12  |-  ( ( 1st `  ( R `
 k ) ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  ( R `  k )
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. )
167165, 166syl6eqr 2133 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( 1st `  ( R `  k
) ) ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ( 2nd `  ( R `  k )
) ) )
168 oveq1 5570 . . . . . . . . . . . . . 14  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( x
( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y ) )
169113, 168opeq12d 3598 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  <. ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )
170 oveq2 5571 . . . . . . . . . . . . . 14  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) )
171170opeq2d 3597 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
172169, 171, 151ovmpt2g 5686 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e.  T  /\  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  S ) )  ->  ( ( 1st `  ( R `  k ) ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
17383, 87, 111, 172syl3anc 1170 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
174167, 173eqtrd 2115 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 1st `  ( R `
 k ) ) ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k )
) ) >. )
175174, 108eqtrd 2115 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
176120, 133, 1753eqtr4rd 2126 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  suc  k ) )
177176exp31 356 . . . . . . 7  |-  ( k  e.  om  ->  ( ph  ->  ( ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
)  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
178177a2d 26 . . . . . 6  |-  ( k  e.  om  ->  (
( ph  ->  ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( ph  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
17959, 63, 67, 71, 78, 178finds 4369 . . . . 5  |-  ( n  e.  om  ->  ( ph  ->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) )
180179impcom 123 . . . 4  |-  ( (
ph  /\  n  e.  om )  ->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) )
18115, 55, 180eqfnfvd 5320 . . 3  |-  ( ph  ->  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )
)
182181rneqd 4611 . 2  |-  ( ph  ->  ran  R  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
183 df-iseq 9574 . 2  |-  seq M
(  .+  ,  F ,  T )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
184182, 183syl6reqr 2134 1  |-  ( ph  ->  seq M (  .+  ,  F ,  T )  =  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   A.wral 2353    C_ wss 2982   (/)c0 3267   <.cop 3419   suc csuc 4148   omcom 4359    X. cxp 4389   ran crn 4392    Fn wfn 4947   -->wf 4948   ` cfv 4952  (class class class)co 5563    |-> cmpt2 5565   1stc1st 5816   2ndc2nd 5817  freccfrec 6059   1c1 7096    + caddc 7098   ZZcz 8484   ZZ>=cuz 8752    seqcseq 9573
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-iseq 9574
This theorem is referenced by:  iseq1t  9586  iseqfclt  9588  iseqp1t  9591
  Copyright terms: Public domain W3C validator