ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoeq3 Unicode version

Theorem isoeq3 5697
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )

Proof of Theorem isoeq3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3926 . . . . 5  |-  ( S  =  T  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) T ( H `  y ) ) )
21bibi2d 231 . . . 4  |-  ( S  =  T  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
322ralbidv 2457 . . 3  |-  ( S  =  T  ->  ( A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
43anbi2d 459 . 2  |-  ( S  =  T  ->  (
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) )  <->  ( H : A
-1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) T ( H `  y ) ) ) ) )
5 df-isom 5127 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
6 df-isom 5127 . 2  |-  ( H 
Isom  R ,  T  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) T ( H `
 y ) ) ) )
74, 5, 63bitr4g 222 1  |-  ( S  =  T  ->  ( H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  T  ( A ,  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   A.wral 2414   class class class wbr 3924   -1-1-onto->wf1o 5117   ` cfv 5118    Isom wiso 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-17 1506  ax-ial 1514  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-cleq 2130  df-clel 2133  df-ral 2419  df-br 3925  df-isom 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator