ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores2 Unicode version

Theorem isores2 5714
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )

Proof of Theorem isores2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of 5367 . . . . . . . 8  |-  ( H : A -1-1-onto-> B  ->  H : A
--> B )
2 ffvelrn 5553 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  x  e.  A )  ->  ( H `  x
)  e.  B )
32adantrr 470 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  x )  e.  B )
4 ffvelrn 5553 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  y  e.  A )  ->  ( H `  y
)  e.  B )
54adantrl 469 . . . . . . . . 9  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( H `  y )  e.  B )
6 brinxp 4607 . . . . . . . . 9  |-  ( ( ( H `  x
)  e.  B  /\  ( H `  y )  e.  B )  -> 
( ( H `  x ) S ( H `  y )  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) )
73, 5, 6syl2anc 408 . . . . . . . 8  |-  ( ( H : A --> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
81, 7sylan 281 . . . . . . 7  |-  ( ( H : A -1-1-onto-> B  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
98anassrs 397 . . . . . 6  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( H `  x
) S ( H `
 y )  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) )
109bibi2d 231 . . . . 5  |-  ( ( ( H : A -1-1-onto-> B  /\  x  e.  A
)  /\  y  e.  A )  ->  (
( x R y  <-> 
( H `  x
) S ( H `
 y ) )  <-> 
( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1110ralbidva 2433 . . . 4  |-  ( ( H : A -1-1-onto-> B  /\  x  e.  A )  ->  ( A. y  e.  A  ( x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1211ralbidva 2433 . . 3  |-  ( H : A -1-1-onto-> B  ->  ( A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) )  <->  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1312pm5.32i 449 . 2  |-  ( ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  (
x R y  <->  ( H `  x ) S ( H `  y ) ) )  <->  ( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <->  ( H `  x ) ( S  i^i  ( B  X.  B ) ) ( H `  y ) ) ) )
14 df-isom 5132 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) S ( H `
 y ) ) ) )
15 df-isom 5132 . 2  |-  ( H 
Isom  R ,  ( S  i^i  ( B  X.  B ) ) ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. x  e.  A  A. y  e.  A  ( x R y  <-> 
( H `  x
) ( S  i^i  ( B  X.  B
) ) ( H `
 y ) ) ) )
1613, 14, 153bitr4i 211 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R , 
( S  i^i  ( B  X.  B ) ) ( A ,  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1480   A.wral 2416    i^i cin 3070   class class class wbr 3929    X. cxp 4537   -->wf 5119   -1-1-onto->wf1o 5122   ` cfv 5123    Isom wiso 5124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-f1o 5130  df-fv 5131  df-isom 5132
This theorem is referenced by:  isores1  5715
  Copyright terms: Public domain W3C validator