ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoselem Unicode version

Theorem isoselem 5490
Description: Lemma for isose 5491. (Contributed by Mario Carneiro, 23-Jun-2015.)
Hypotheses
Ref Expression
isofrlem.1  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
isofrlem.2  |-  ( ph  ->  ( H " x
)  e.  _V )
Assertion
Ref Expression
isoselem  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Distinct variable groups:    x, A    x, B    x, H    ph, x    x, R    x, S

Proof of Theorem isoselem
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfse2 4728 . . . . . . . . 9  |-  ( R Se  A  <->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e. 
_V )
21biimpi 118 . . . . . . . 8  |-  ( R Se  A  ->  A. z  e.  A  ( A  i^i  ( `' R " { z } ) )  e.  _V )
32r19.21bi 2450 . . . . . . 7  |-  ( ( R Se  A  /\  z  e.  A )  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
43expcom 114 . . . . . 6  |-  ( z  e.  A  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
54adantl 271 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( A  i^i  ( `' R " { z } ) )  e.  _V )
)
6 imaeq2 4694 . . . . . . . . . . 11  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( H " x
)  =  ( H
" ( A  i^i  ( `' R " { z } ) ) ) )
76eleq1d 2148 . . . . . . . . . 10  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( H "
x )  e.  _V  <->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
87imbi2d 228 . . . . . . . . 9  |-  ( x  =  ( A  i^i  ( `' R " { z } ) )  -> 
( ( ph  ->  ( H " x )  e.  _V )  <->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) ) )
9 isofrlem.2 . . . . . . . . 9  |-  ( ph  ->  ( H " x
)  e.  _V )
108, 9vtoclg 2659 . . . . . . . 8  |-  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( ph  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1110com12 30 . . . . . . 7  |-  ( ph  ->  ( ( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
1211adantr 270 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( H "
( A  i^i  ( `' R " { z } ) ) )  e.  _V ) )
13 isofrlem.1 . . . . . . . 8  |-  ( ph  ->  H  Isom  R ,  S  ( A ,  B ) )
14 isoini 5488 . . . . . . . 8  |-  ( ( H  Isom  R ,  S  ( A ,  B )  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1513, 14sylan 277 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( H " ( A  i^i  ( `' R " { z } ) ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
1615eleq1d 2148 . . . . . 6  |-  ( (
ph  /\  z  e.  A )  ->  (
( H " ( A  i^i  ( `' R " { z } ) ) )  e.  _V  <->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
1712, 16sylibd 147 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  (
( A  i^i  ( `' R " { z } ) )  e. 
_V  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
185, 17syld 44 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  ( R Se  A  ->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
1918ralrimdva 2442 . . 3  |-  ( ph  ->  ( R Se  A  ->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
20 isof1o 5478 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
21 f1ofn 5158 . . . . 5  |-  ( H : A -1-1-onto-> B  ->  H  Fn  A )
22 sneq 3417 . . . . . . . . 9  |-  ( y  =  ( H `  z )  ->  { y }  =  { ( H `  z ) } )
2322imaeq2d 4698 . . . . . . . 8  |-  ( y  =  ( H `  z )  ->  ( `' S " { y } )  =  ( `' S " { ( H `  z ) } ) )
2423ineq2d 3174 . . . . . . 7  |-  ( y  =  ( H `  z )  ->  ( B  i^i  ( `' S " { y } ) )  =  ( B  i^i  ( `' S " { ( H `  z ) } ) ) )
2524eleq1d 2148 . . . . . 6  |-  ( y  =  ( H `  z )  ->  (
( B  i^i  ( `' S " { y } ) )  e. 
_V 
<->  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2625ralrn 5337 . . . . 5  |-  ( H  Fn  A  ->  ( A. y  e.  ran  H ( B  i^i  ( `' S " { y } ) )  e. 
_V 
<-> 
A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V ) )
2713, 20, 21, 264syl 18 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e.  _V )
)
28 f1ofo 5164 . . . . . 6  |-  ( H : A -1-1-onto-> B  ->  H : A -onto-> B )
29 forn 5140 . . . . . 6  |-  ( H : A -onto-> B  ->  ran  H  =  B )
3013, 20, 28, 294syl 18 . . . . 5  |-  ( ph  ->  ran  H  =  B )
3130raleqdv 2556 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  H ( B  i^i  ( `' S " { y } ) )  e.  _V  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e.  _V )
)
3227, 31bitr3d 188 . . 3  |-  ( ph  ->  ( A. z  e.  A  ( B  i^i  ( `' S " { ( H `  z ) } ) )  e. 
_V 
<-> 
A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
3319, 32sylibd 147 . 2  |-  ( ph  ->  ( R Se  A  ->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V ) )
34 dfse2 4728 . 2  |-  ( S Se  B  <->  A. y  e.  B  ( B  i^i  ( `' S " { y } ) )  e. 
_V )
3533, 34syl6ibr 160 1  |-  ( ph  ->  ( R Se  A  ->  S Se  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2349   _Vcvv 2602    i^i cin 2973   {csn 3406   Se wse 4092   `'ccnv 4370   ran crn 4372   "cima 4374    Fn wfn 4927   -onto->wfo 4930   -1-1-onto->wf1o 4931   ` cfv 4932    Isom wiso 4933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-se 4096  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-isom 4941
This theorem is referenced by:  isose  5491
  Copyright terms: Public domain W3C validator