![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isseti | Unicode version |
Description: A way to say "![]() |
Ref | Expression |
---|---|
isseti.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
isseti |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | isset 2606 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 143 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-v 2604 |
This theorem is referenced by: rexcom4b 2625 ceqsex 2638 vtoclf 2653 vtocl2 2655 vtocl3 2656 vtoclef 2672 eqvinc 2719 euind 2780 opabm 4043 eusv2nf 4214 dtruex 4310 limom 4362 isarep2 5017 dfoprab2 5583 rnoprab 5618 dmaddpq 6631 dmmulpq 6632 bj-inf2vnlem1 10950 |
Copyright terms: Public domain | W3C validator |