ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncom4 Unicode version

Theorem iuncom4 3692
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iuncom4  |-  U_ x  e.  A  U. B  = 
U. U_ x  e.  A  B

Proof of Theorem iuncom4
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2329 . . . . . . 7  |-  ( E. z  e.  B  y  e.  z  <->  E. z
( z  e.  B  /\  y  e.  z
) )
21rexbii 2348 . . . . . 6  |-  ( E. x  e.  A  E. z  e.  B  y  e.  z  <->  E. x  e.  A  E. z ( z  e.  B  /\  y  e.  z ) )
3 rexcom4 2594 . . . . . 6  |-  ( E. x  e.  A  E. z ( z  e.  B  /\  y  e.  z )  <->  E. z E. x  e.  A  ( z  e.  B  /\  y  e.  z
) )
42, 3bitri 177 . . . . 5  |-  ( E. x  e.  A  E. z  e.  B  y  e.  z  <->  E. z E. x  e.  A  ( z  e.  B  /\  y  e.  z ) )
5 r19.41v 2483 . . . . . 6  |-  ( E. x  e.  A  ( z  e.  B  /\  y  e.  z )  <->  ( E. x  e.  A  z  e.  B  /\  y  e.  z )
)
65exbii 1512 . . . . 5  |-  ( E. z E. x  e.  A  ( z  e.  B  /\  y  e.  z )  <->  E. z
( E. x  e.  A  z  e.  B  /\  y  e.  z
) )
74, 6bitri 177 . . . 4  |-  ( E. x  e.  A  E. z  e.  B  y  e.  z  <->  E. z ( E. x  e.  A  z  e.  B  /\  y  e.  z ) )
8 eluni2 3612 . . . . 5  |-  ( y  e.  U. B  <->  E. z  e.  B  y  e.  z )
98rexbii 2348 . . . 4  |-  ( E. x  e.  A  y  e.  U. B  <->  E. x  e.  A  E. z  e.  B  y  e.  z )
10 df-rex 2329 . . . . 5  |-  ( E. z  e.  U_  x  e.  A  B y  e.  z  <->  E. z ( z  e.  U_ x  e.  A  B  /\  y  e.  z ) )
11 eliun 3689 . . . . . . 7  |-  ( z  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  B )
1211anbi1i 439 . . . . . 6  |-  ( ( z  e.  U_ x  e.  A  B  /\  y  e.  z )  <->  ( E. x  e.  A  z  e.  B  /\  y  e.  z )
)
1312exbii 1512 . . . . 5  |-  ( E. z ( z  e. 
U_ x  e.  A  B  /\  y  e.  z )  <->  E. z ( E. x  e.  A  z  e.  B  /\  y  e.  z ) )
1410, 13bitri 177 . . . 4  |-  ( E. z  e.  U_  x  e.  A  B y  e.  z  <->  E. z ( E. x  e.  A  z  e.  B  /\  y  e.  z ) )
157, 9, 143bitr4i 205 . . 3  |-  ( E. x  e.  A  y  e.  U. B  <->  E. z  e.  U_  x  e.  A  B y  e.  z )
16 eliun 3689 . . 3  |-  ( y  e.  U_ x  e.  A  U. B  <->  E. x  e.  A  y  e.  U. B )
17 eluni2 3612 . . 3  |-  ( y  e.  U. U_ x  e.  A  B  <->  E. z  e.  U_  x  e.  A  B y  e.  z )
1815, 16, 173bitr4i 205 . 2  |-  ( y  e.  U_ x  e.  A  U. B  <->  y  e.  U.
U_ x  e.  A  B )
1918eqriv 2053 1  |-  U_ x  e.  A  U. B  = 
U. U_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 101    = wceq 1259   E.wex 1397    e. wcel 1409   E.wrex 2324   U.cuni 3608   U_ciun 3685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-uni 3609  df-iun 3687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator