Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunconstm Unicode version

Theorem iunconstm 3693
 Description: Indexed union of a constant class, i.e. where does not depend on . (Contributed by Jim Kingdon, 15-Aug-2018.)
Assertion
Ref Expression
iunconstm
Distinct variable groups:   ,   ,

Proof of Theorem iunconstm
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.9rmv 3341 . . 3
2 eliun 3689 . . 3
31, 2syl6rbbr 192 . 2
43eqrdv 2054 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1259  wex 1397   wcel 1409  wrex 2324  ciun 3685 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-iun 3687 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator