ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxun Unicode version

Theorem iunxun 3763
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunxun  |-  U_ x  e.  ( A  u.  B
) C  =  (
U_ x  e.  A  C  u.  U_ x  e.  B  C )

Proof of Theorem iunxun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rexun 3151 . . . 4  |-  ( E. x  e.  ( A  u.  B ) y  e.  C  <->  ( E. x  e.  A  y  e.  C  \/  E. x  e.  B  y  e.  C ) )
2 eliun 3689 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
3 eliun 3689 . . . . 5  |-  ( y  e.  U_ x  e.  B  C  <->  E. x  e.  B  y  e.  C )
42, 3orbi12i 691 . . . 4  |-  ( ( y  e.  U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C )  <->  ( E. x  e.  A  y  e.  C  \/  E. x  e.  B  y  e.  C ) )
51, 4bitr4i 180 . . 3  |-  ( E. x  e.  ( A  u.  B ) y  e.  C  <->  ( y  e.  U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C
) )
6 eliun 3689 . . 3  |-  ( y  e.  U_ x  e.  ( A  u.  B
) C  <->  E. x  e.  ( A  u.  B
) y  e.  C
)
7 elun 3112 . . 3  |-  ( y  e.  ( U_ x  e.  A  C  u.  U_ x  e.  B  C
)  <->  ( y  e. 
U_ x  e.  A  C  \/  y  e.  U_ x  e.  B  C
) )
85, 6, 73bitr4i 205 . 2  |-  ( y  e.  U_ x  e.  ( A  u.  B
) C  <->  y  e.  ( U_ x  e.  A  C  u.  U_ x  e.  B  C ) )
98eqriv 2053 1  |-  U_ x  e.  ( A  u.  B
) C  =  (
U_ x  e.  A  C  u.  U_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    \/ wo 639    = wceq 1259    e. wcel 1409   E.wrex 2324    u. cun 2943   U_ciun 3685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-iun 3687
This theorem is referenced by:  iunsuc  4185  rdgisuc1  6002  oasuc  6075  omsuc  6082
  Copyright terms: Public domain W3C validator