ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxdisj Unicode version

Theorem ixxdisj 9686
Description: Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
Hypotheses
Ref Expression
ixxssixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
ixxun.2  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
ixxun.3  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )
Assertion
Ref Expression
ixxdisj  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A O B )  i^i  ( B P C ) )  =  (/) )
Distinct variable groups:    x, w, y, z, A    w, C, x, y, z    w, O, x    w, B, x, y, z    w, P   
x, R, y, z   
x, S, y, z   
x, T, y, z   
x, U, y, z
Allowed substitution hints:    P( x, y, z)    R( w)    S( w)    T( w)    U( w)    O( y,
z)

Proof of Theorem ixxdisj
StepHypRef Expression
1 elin 3259 . . . 4  |-  ( w  e.  ( ( A O B )  i^i  ( B P C ) )  <->  ( w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )
2 ixxssixx.1 . . . . . . . . . . 11  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
32elixx1 9680 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
433adant3 1001 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
w  e.  ( A O B )  <->  ( w  e.  RR*  /\  A R w  /\  w S B ) ) )
54biimpa 294 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( A O B ) )  ->  (
w  e.  RR*  /\  A R w  /\  w S B ) )
65simp3d 995 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( A O B ) )  ->  w S B )
76adantrr 470 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )  ->  w S B )
8 ixxun.2 . . . . . . . . . . . 12  |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x T z  /\  z U y ) } )
98elixx1 9680 . . . . . . . . . . 11  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  (
w  e.  ( B P C )  <->  ( w  e.  RR*  /\  B T w  /\  w U C ) ) )
1093adant1 999 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
w  e.  ( B P C )  <->  ( w  e.  RR*  /\  B T w  /\  w U C ) ) )
1110biimpa 294 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  (
w  e.  RR*  /\  B T w  /\  w U C ) )
1211simp2d 994 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  B T w )
13 simpl2 985 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  B  e.  RR* )
1411simp1d 993 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  w  e.  RR* )
15 ixxun.3 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )
1613, 14, 15syl2anc 408 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  ( B T w  <->  -.  w S B ) )
1712, 16mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  w  e.  ( B P C ) )  ->  -.  w S B )
1817adantrl 469 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )  ->  -.  w S B )
197, 18pm2.65da 650 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  ( w  e.  ( A O B )  /\  w  e.  ( B P C ) ) )
2019pm2.21d 608 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( w  e.  ( A O B )  /\  w  e.  ( B P C ) )  ->  w  e.  (/) ) )
211, 20syl5bi 151 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
w  e.  ( ( A O B )  i^i  ( B P C ) )  ->  w  e.  (/) ) )
2221ssrdv 3103 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A O B )  i^i  ( B P C ) ) 
C_  (/) )
23 ss0 3403 . 2  |-  ( ( ( A O B )  i^i  ( B P C ) ) 
C_  (/)  ->  ( ( A O B )  i^i  ( B P C ) )  =  (/) )
2422, 23syl 14 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A O B )  i^i  ( B P C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   {crab 2420    i^i cin 3070    C_ wss 3071   (/)c0 3363   class class class wbr 3929  (class class class)co 5774    e. cmpo 5776   RR*cxr 7799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804
This theorem is referenced by:  ioodisj  9776
  Copyright terms: Public domain W3C validator