![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctil | Unicode version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
jctil.2 |
![]() ![]() |
Ref | Expression |
---|---|
jctil |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | jctil.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | jca 300 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 |
This theorem is referenced by: jctl 307 ddifnel 3104 unidif 3641 iunxdif2 3734 exss 3990 reg2exmidlema 4285 limom 4362 xpiindim 4501 relssres 4676 funco 4970 nfunsn 5239 fliftcnv 5466 fo1stresm 5819 fo2ndresm 5820 dftpos3 5911 tfri1d 5984 rdgtfr 6023 rdgruledefgg 6024 frectfr 6049 phplem2 6388 nqprrnd 6795 nqprxx 6798 ltexprlempr 6860 recexprlempr 6884 cauappcvgprlemcl 6905 caucvgprlemcl 6928 caucvgprprlemcl 6956 lemulge11 8011 nn0ge2m1nn 8415 frecfzennn 9508 |
Copyright terms: Public domain | W3C validator |