ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctr Unicode version

Theorem jctr 302
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
Hypothesis
Ref Expression
jctl.1  |-  ps
Assertion
Ref Expression
jctr  |-  ( ph  ->  ( ph  /\  ps ) )

Proof of Theorem jctr
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 jctl.1 . 2  |-  ps
31, 2jctir 300 1  |-  ( ph  ->  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 105
This theorem is referenced by:  mpanl2  419  mpanr2  422  bm1.1  2041  undifss  3330  brprcneu  5198  mpt2eq12  5592  tfri3  5983  ige2m2fzo  9155
  Copyright terms: Public domain W3C validator