ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmcllem Unicode version

Theorem lcmcllem 11748
Description: Lemma for lcmn0cl 11749 and dvdslcm 11750. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmcllem  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
Distinct variable groups:    n, M    n, N

Proof of Theorem lcmcllem
StepHypRef Expression
1 lcmn0val 11747 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
2 1zzd 9081 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  1  e.  ZZ )
3 nnuz 9361 . . . 4  |-  NN  =  ( ZZ>= `  1 )
4 rabeq 2678 . . . 4  |-  ( NN  =  ( ZZ>= `  1
)  ->  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) } )
53, 4ax-mp 5 . . 3  |-  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  =  { n  e.  ( ZZ>=
`  1 )  |  ( M  ||  n  /\  N  ||  n ) }
6 simpll 518 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  ZZ )
7 simplr 519 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  ZZ )
86, 7zmulcld 9179 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N )  e.  ZZ )
96zcnd 9174 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  e.  CC )
107zcnd 9174 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  e.  CC )
11 ioran 741 . . . . . . . . . . . 12  |-  ( -.  ( M  =  0  \/  N  =  0 )  <->  ( -.  M  =  0  /\  -.  N  =  0 ) )
1211biimpi 119 . . . . . . . . . . 11  |-  ( -.  ( M  =  0  \/  N  =  0 )  ->  ( -.  M  =  0  /\  -.  N  =  0
) )
1312adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( -.  M  =  0  /\  -.  N  =  0 ) )
1413simpld 111 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  M  = 
0 )
1514neqned 2315 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M  =/=  0
)
16 0zd 9066 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  0  e.  ZZ )
17 zapne 9125 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
186, 16, 17syl2anc 408 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M #  0  <-> 
M  =/=  0 ) )
1915, 18mpbird 166 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  M #  0 )
2013simprd 113 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  -.  N  = 
0 )
2120neqned 2315 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N  =/=  0
)
22 zapne 9125 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
237, 16, 22syl2anc 408 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( N #  0  <-> 
N  =/=  0 ) )
2421, 23mpbird 166 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  N #  0 )
259, 10, 19, 24mulap0d 8419 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N ) #  0 )
26 zapne 9125 . . . . . . 7  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( M  x.  N ) #  0  <->  ( M  x.  N )  =/=  0
) )
278, 16, 26syl2anc 408 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( ( M  x.  N ) #  0  <-> 
( M  x.  N
)  =/=  0 ) )
2825, 27mpbid 146 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  x.  N )  =/=  0
)
29 nnabscl 10872 . . . . 5  |-  ( ( ( M  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  =/=  0 )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
308, 28, 29syl2anc 408 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  NN )
31 dvdsmul1 11515 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
32 zmulcl 9107 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
33 dvdsabsb 11512 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  ||  ( M  x.  N
)  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
3432, 33syldan 280 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( M  x.  N )  <->  M 
||  ( abs `  ( M  x.  N )
) ) )
3531, 34mpbid 146 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( abs `  ( M  x.  N
) ) )
36 dvdsmul2 11516 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
37 dvdsabsb 11512 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3832, 37sylan2 284 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( N  ||  ( M  x.  N
)  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
3938anabss7 572 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  ||  ( M  x.  N )  <->  N 
||  ( abs `  ( M  x.  N )
) ) )
4036, 39mpbid 146 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( abs `  ( M  x.  N
) ) )
4135, 40jca 304 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  ( abs `  ( M  x.  N ) )  /\  N  ||  ( abs `  ( M  x.  N )
) ) )
4241adantr 274 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M  ||  ( abs `  ( M  x.  N ) )  /\  N  ||  ( abs `  ( M  x.  N ) ) ) )
43 breq2 3933 . . . . . 6  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( M  ||  n  <->  M  ||  ( abs `  ( M  x.  N
) ) ) )
44 breq2 3933 . . . . . 6  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( N  ||  n  <->  N  ||  ( abs `  ( M  x.  N
) ) ) )
4543, 44anbi12d 464 . . . . 5  |-  ( n  =  ( abs `  ( M  x.  N )
)  ->  ( ( M  ||  n  /\  N  ||  n )  <->  ( M  ||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
4645elrab 2840 . . . 4  |-  ( ( abs `  ( M  x.  N ) )  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) }  <->  ( ( abs `  ( M  x.  N ) )  e.  NN  /\  ( M 
||  ( abs `  ( M  x.  N )
)  /\  N  ||  ( abs `  ( M  x.  N ) ) ) ) )
4730, 42, 46sylanbrc 413 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( abs `  ( M  x.  N )
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
48 simplll 522 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  ->  M  e.  ZZ )
49 elfzelz 9806 . . . . . 6  |-  ( n  e.  ( 1 ... ( abs `  ( M  x.  N )
) )  ->  n  e.  ZZ )
5049adantl 275 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  ->  n  e.  ZZ )
51 zdvdsdc 11514 . . . . 5  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  -> DECID  M 
||  n )
5248, 50, 51syl2anc 408 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  M  ||  n )
53 simpllr 523 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  ->  N  e.  ZZ )
54 zdvdsdc 11514 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  -> DECID  N 
||  n )
5553, 50, 54syl2anc 408 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  N  ||  n )
56 dcan 918 . . . 4  |-  (DECID  M  ||  n  ->  (DECID  N  ||  n  -> DECID  ( M  ||  n  /\  N  ||  n ) ) )
5752, 55, 56sylc 62 . . 3  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0
) )  /\  n  e.  ( 1 ... ( abs `  ( M  x.  N ) ) ) )  -> DECID  ( M  ||  n  /\  N  ||  n ) )
582, 5, 47, 57infssuzcldc 11644 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  -> inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  )  e. 
{ n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
591, 58eqeltrd 2216 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  \/  N  =  0 ) )  ->  ( M lcm  N
)  e.  { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   {crab 2420   class class class wbr 3929   ` cfv 5123  (class class class)co 5774  infcinf 6870   RRcr 7619   0cc0 7620   1c1 7621    x. cmul 7625    < clt 7800   # cap 8343   NNcn 8720   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790   abscabs 10769    || cdvds 11493   lcm clcm 11741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-lcm 11742
This theorem is referenced by:  lcmn0cl  11749  dvdslcm  11750
  Copyright terms: Public domain W3C validator