Proof of Theorem lcmneg
Step | Hyp | Ref
| Expression |
1 | | lcm0val 10654 |
. . . . . . . 8
  lcm    |
2 | | znegcl 8515 |
. . . . . . . . 9
    |
3 | | lcm0val 10654 |
. . . . . . . . 9
 
  lcm
   |
4 | 2, 3 | syl 14 |
. . . . . . . 8
   lcm    |
5 | 1, 4 | eqtr4d 2118 |
. . . . . . 7
  lcm    lcm
   |
6 | 5 | ad2antlr 473 |
. . . . . 6
    
 lcm    lcm
   |
7 | | oveq2 5571 |
. . . . . . . 8
  lcm   lcm    |
8 | | oveq2 5571 |
. . . . . . . 8
   lcm    lcm    |
9 | 7, 8 | eqeq12d 2097 |
. . . . . . 7
   lcm    lcm   lcm    lcm     |
10 | 9 | adantl 271 |
. . . . . 6
    
  lcm    lcm
  lcm    lcm     |
11 | 6, 10 | mpbird 165 |
. . . . 5
    
 lcm    lcm    |
12 | | lcmcom 10653 |
. . . . . . 7
 
  lcm   lcm    |
13 | | lcmcom 10653 |
. . . . . . . 8
     lcm     lcm    |
14 | 2, 13 | sylan2 280 |
. . . . . . 7
 
  lcm     lcm    |
15 | 12, 14 | eqeq12d 2097 |
. . . . . 6
 
   lcm   lcm  
 lcm    lcm     |
16 | 15 | adantr 270 |
. . . . 5
    
  lcm   lcm  
 lcm    lcm     |
17 | 11, 16 | mpbird 165 |
. . . 4
    
 lcm   lcm     |
18 | | neg0 7473 |
. . . . . . . 8
  |
19 | 18 | oveq2i 5574 |
. . . . . . 7
 lcm    lcm   |
20 | 19 | eqcomi 2087 |
. . . . . 6
 lcm   lcm    |
21 | | oveq2 5571 |
. . . . . 6
  lcm   lcm    |
22 | | negeq 7420 |
. . . . . . 7
     |
23 | 22 | oveq2d 5579 |
. . . . . 6
  lcm    lcm     |
24 | 20, 21, 23 | 3eqtr4a 2141 |
. . . . 5
  lcm   lcm     |
25 | 24 | adantl 271 |
. . . 4
    
 lcm   lcm     |
26 | 17, 25 | jaodan 744 |
. . 3
        lcm   lcm     |
27 | | dvdslcm 10658 |
. . . . . . . 8
     
lcm     lcm      |
28 | 2, 27 | sylan2 280 |
. . . . . . 7
 
   lcm     lcm      |
29 | | simpr 108 |
. . . . . . . . 9
 
   |
30 | | lcmcl 10661 |
. . . . . . . . . . 11
     lcm     |
31 | 2, 30 | sylan2 280 |
. . . . . . . . . 10
 
  lcm     |
32 | 31 | nn0zd 8600 |
. . . . . . . . 9
 
  lcm     |
33 | | negdvdsb 10419 |
. . . . . . . . 9
  
lcm      lcm  
 
lcm      |
34 | 29, 32, 33 | syl2anc 403 |
. . . . . . . 8
 
   lcm  
 
lcm      |
35 | 34 | anbi2d 452 |
. . . . . . 7
 
   
lcm    lcm      lcm     lcm       |
36 | 28, 35 | mpbird 165 |
. . . . . 6
 
   lcm    lcm      |
37 | 36 | adantr 270 |
. . . . 5
        
lcm    lcm      |
38 | | zcn 8489 |
. . . . . . . . . . . . 13
   |
39 | 38 | negeq0d 7530 |
. . . . . . . . . . . 12
 
    |
40 | 39 | orbi2d 737 |
. . . . . . . . . . 11
          |
41 | 40 | notbid 625 |
. . . . . . . . . 10
   
      |
42 | 41 | biimpa 290 |
. . . . . . . . 9
     
    |
43 | 42 | adantll 460 |
. . . . . . . 8
      
     |
44 | | lcmn0cl 10657 |
. . . . . . . . 9
   
      lcm     |
45 | 2, 44 | sylanl2 395 |
. . . . . . . 8
         lcm     |
46 | 43, 45 | syldan 276 |
. . . . . . 7
        lcm     |
47 | | simpl 107 |
. . . . . . 7
           |
48 | | 3anass 924 |
. . . . . . 7
   lcm  

  lcm        |
49 | 46, 47, 48 | sylanbrc 408 |
. . . . . 6
         lcm  
   |
50 | | simpr 108 |
. . . . . 6
      
    |
51 | | lcmledvds 10659 |
. . . . . 6
    lcm  
 
     lcm    lcm     lcm   lcm      |
52 | 49, 50, 51 | syl2anc 403 |
. . . . 5
          lcm  
 lcm     lcm 
 lcm      |
53 | 37, 52 | mpd 13 |
. . . 4
        lcm 
 lcm     |
54 | | dvdslcm 10658 |
. . . . . 6
 
   lcm   lcm     |
55 | 54 | adantr 270 |
. . . . 5
        
lcm 
 lcm     |
56 | | simplr 497 |
. . . . . . . 8
         |
57 | | lcmn0cl 10657 |
. . . . . . . . 9
        lcm    |
58 | 57 | nnzd 8601 |
. . . . . . . 8
        lcm    |
59 | | negdvdsb 10419 |
. . . . . . . 8
  
lcm     lcm    lcm     |
60 | 56, 58, 59 | syl2anc 403 |
. . . . . . 7
        
lcm    lcm     |
61 | 60 | anbi2d 452 |
. . . . . 6
          lcm 
 lcm  
  lcm    lcm      |
62 | | lcmledvds 10659 |
. . . . . . . . . 10
    lcm 
  
      lcm    lcm  
 lcm    lcm     |
63 | 62 | ex 113 |
. . . . . . . . 9
   lcm       
   lcm 
 
lcm  
 lcm    lcm      |
64 | 2, 63 | syl3an3 1205 |
. . . . . . . 8
   lcm      
   lcm 
 
lcm  
 lcm    lcm      |
65 | 64 | 3expib 1142 |
. . . . . . 7
  lcm 
 
    
   lcm 
 
lcm  
 lcm    lcm       |
66 | 57, 47, 43, 65 | syl3c 62 |
. . . . . 6
          lcm 
 
lcm  
 lcm    lcm     |
67 | 61, 66 | sylbid 148 |
. . . . 5
          lcm 
 lcm    lcm  
 lcm     |
68 | 55, 67 | mpd 13 |
. . . 4
        lcm  
 lcm    |
69 | | lcmcl 10661 |
. . . . . . 7
 
  lcm    |
70 | 69 | nn0red 8461 |
. . . . . 6
 
  lcm    |
71 | 30 | nn0red 8461 |
. . . . . . 7
     lcm     |
72 | 2, 71 | sylan2 280 |
. . . . . 6
 
  lcm     |
73 | 70, 72 | letri3d 7345 |
. . . . 5
 
   lcm   lcm  
  lcm   lcm   
lcm    lcm      |
74 | 73 | adantr 270 |
. . . 4
         lcm   lcm  
  lcm   lcm   
lcm    lcm      |
75 | 53, 68, 74 | mpbir2and 886 |
. . 3
        lcm   lcm     |
76 | | lcmmndc 10651 |
. . . 4
 
 DECID     |
77 | | exmiddc 778 |
. . . 4
DECID      
    |
78 | 76, 77 | syl 14 |
. . 3
 
    
    |
79 | 26, 75, 78 | mpjaodan 745 |
. 2
 
  lcm   lcm     |
80 | 79 | eqcomd 2088 |
1
 
  lcm    lcm    |