ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2msqi Unicode version

Theorem le2msqi 8137
Description: The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.)
Hypotheses
Ref Expression
ltplus1.1  |-  A  e.  RR
prodgt0.2  |-  B  e.  RR
Assertion
Ref Expression
le2msqi  |-  ( ( 0  <_  A  /\  0  <_  B )  -> 
( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B ) ) )

Proof of Theorem le2msqi
StepHypRef Expression
1 ltplus1.1 . 2  |-  A  e.  RR
2 prodgt0.2 . . 3  |-  B  e.  RR
3 le2msq 8123 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B )
) )
42, 3mpanr1 428 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  0  <_  B )  ->  ( A  <_  B 
<->  ( A  x.  A
)  <_  ( B  x.  B ) ) )
51, 4mpanl1 425 1  |-  ( ( 0  <_  A  /\  0  <_  B )  -> 
( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   class class class wbr 3806  (class class class)co 5565   RRcr 7119   0cc0 7120    x. cmul 7125    <_ cle 7293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7206  ax-resscn 7207  ax-1cn 7208  ax-1re 7209  ax-icn 7210  ax-addcl 7211  ax-addrcl 7212  ax-mulcl 7213  ax-mulrcl 7214  ax-addcom 7215  ax-mulcom 7216  ax-addass 7217  ax-mulass 7218  ax-distr 7219  ax-i2m1 7220  ax-0lt1 7221  ax-1rid 7222  ax-0id 7223  ax-rnegex 7224  ax-precex 7225  ax-cnre 7226  ax-pre-ltirr 7227  ax-pre-ltwlin 7228  ax-pre-lttrn 7229  ax-pre-apti 7230  ax-pre-ltadd 7231  ax-pre-mulgt0 7232  ax-pre-mulext 7233
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4077  df-po 4080  df-iso 4081  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-pnf 7294  df-mnf 7295  df-xr 7296  df-ltxr 7297  df-le 7298  df-sub 7425  df-neg 7426  df-reap 7819  df-ap 7826
This theorem is referenced by:  le2sqi  9738
  Copyright terms: Public domain W3C validator