ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ledivge1le Unicode version

Theorem ledivge1le 9506
Description: If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ledivge1le  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)

Proof of Theorem ledivge1le
StepHypRef Expression
1 divle1le 9505 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( A  /  B )  <_  1  <->  A  <_  B ) )
21adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  <->  A  <_  B ) )
3 rerpdivcl 9465 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( A  /  B
)  e.  RR )
43adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  /  B
)  e.  RR )
5 1red 7774 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  1  e.  RR )
6 rpre 9441 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  C  e.  RR )
76adantl 275 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  C  e.  RR )
8 letr 7840 . . . . . . . . . 10  |-  ( ( ( A  /  B
)  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( ( A  /  B )  <_  1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
94, 5, 7, 8syl3anc 1216 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( ( A  /  B )  <_ 
1  /\  1  <_  C )  ->  ( A  /  B )  <_  C
) )
109expd 256 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( ( A  /  B )  <_  1  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
112, 10sylbird 169 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( A  <_  B  ->  ( 1  <_  C  ->  ( A  /  B
)  <_  C )
) )
1211com23 78 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR+ )  /\  C  e.  RR+ )  ->  ( 1  <_  C  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) )
1312expimpd 360 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+ )  -> 
( ( C  e.  RR+  /\  1  <_  C
)  ->  ( A  <_  B  ->  ( A  /  B )  <_  C
) ) )
1413ex 114 . . . 4  |-  ( A  e.  RR  ->  ( B  e.  RR+  ->  (
( C  e.  RR+  /\  1  <_  C )  ->  ( A  <_  B  ->  ( A  /  B
)  <_  C )
) ) )
15143imp1 1198 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  B
)  <_  C )
16 simp1 981 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  ->  A  e.  RR )
176adantr 274 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  C  e.  RR )
18 0lt1 7882 . . . . . . . . . 10  |-  0  <  1
19 0red 7760 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  0  e.  RR )
20 1red 7774 . . . . . . . . . . 11  |-  ( C  e.  RR+  ->  1  e.  RR )
21 ltletr 7846 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  C  e.  RR )  ->  (
( 0  <  1  /\  1  <_  C )  ->  0  <  C
) )
2219, 20, 6, 21syl3anc 1216 . . . . . . . . . 10  |-  ( C  e.  RR+  ->  ( ( 0  <  1  /\  1  <_  C )  ->  0  <  C ) )
2318, 22mpani 426 . . . . . . . . 9  |-  ( C  e.  RR+  ->  ( 1  <_  C  ->  0  <  C ) )
2423imp 123 . . . . . . . 8  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  0  <  C )
2517, 24jca 304 . . . . . . 7  |-  ( ( C  e.  RR+  /\  1  <_  C )  ->  ( C  e.  RR  /\  0  <  C ) )
26253ad2ant3 1004 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( C  e.  RR  /\  0  <  C ) )
27 rpregt0 9448 . . . . . . 7  |-  ( B  e.  RR+  ->  ( B  e.  RR  /\  0  <  B ) )
28273ad2ant2 1003 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( B  e.  RR  /\  0  <  B ) )
2916, 26, 283jca 1161 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
3029adantr 274 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) ) )
31 lediv23 8644 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3230, 31syl 14 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( ( A  /  C )  <_  B  <->  ( A  /  B )  <_  C ) )
3315, 32mpbird 166 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  /\  A  <_  B )  -> 
( A  /  C
)  <_  B )
3433ex 114 1  |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C ) )  -> 
( A  <_  B  ->  ( A  /  C
)  <_  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612   0cc0 7613   1c1 7614    < clt 7793    <_ cle 7794    / cdiv 8425   RR+crp 9434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-rp 9435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator