ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrd Unicode version

Theorem lelttrd 7887
Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
letrd.3  |-  ( ph  ->  C  e.  RR )
lelttrd.4  |-  ( ph  ->  A  <_  B )
lelttrd.5  |-  ( ph  ->  B  <  C )
Assertion
Ref Expression
lelttrd  |-  ( ph  ->  A  <  C )

Proof of Theorem lelttrd
StepHypRef Expression
1 lelttrd.4 . 2  |-  ( ph  ->  A  <_  B )
2 lelttrd.5 . 2  |-  ( ph  ->  B  <  C )
3 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 letrd.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 lelttr 7852 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1216 . 2  |-  ( ph  ->  ( ( A  <_  B  /\  B  <  C
)  ->  A  <  C ) )
81, 2, 7mp2and 429 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480   class class class wbr 3929   RRcr 7619    < clt 7800    <_ cle 7801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltwlin 7733
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806
This theorem is referenced by:  lt2msq1  8643  ledivp1  8661  suprzclex  9149  btwnapz  9181  ge0p1rp  9473  elfzolt3  9934  exbtwnz  10028  btwnzge0  10073  flltdivnn0lt  10077  modqid  10122  mulqaddmodid  10137  modqsubdir  10166  nn0opthlem2d  10467  bcp1nk  10508  zfz1isolemiso  10582  resqrexlemover  10782  resqrexlemnm  10790  resqrexlemcvg  10791  resqrexlemglsq  10794  resqrexlemga  10795  abslt  10860  abs3lem  10883  fzomaxdiflem  10884  icodiamlt  10952  maxltsup  10990  reccn2ap  11082  expcnvre  11272  absltap  11278  cvgratnnlemfm  11298  cvgratnnlemrate  11299  mertenslemi1  11304  ef01bndlem  11463  sin01bnd  11464  cos01bnd  11465  eirraplem  11483  dvdslelemd  11541  sqrt2irrap  11858  ssblex  12600  dedekindeulemuub  12764  dedekindeulemlu  12768  suplociccreex  12771  dedekindicclemuub  12773  dedekindicclemlu  12777  dedekindicc  12780  ivthinclemuopn  12785  dveflem  12855  coseq00topi  12916  coseq0negpitopi  12917  cosordlem  12930  qdencn  13222  cvgcmp2nlemabs  13227
  Copyright terms: Public domain W3C validator