ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letr Unicode version

Theorem letr 7250
Description: Transitive law. (Contributed by NM, 12-Nov-1999.)
Assertion
Ref Expression
letr  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem letr
StepHypRef Expression
1 axltwlin 7236 . . . . 5  |-  ( ( C  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
213coml 1146 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
3 orcom 680 . . . 4  |-  ( ( C  <  B  \/  B  <  A )  <->  ( B  <  A  \/  C  < 
B ) )
42, 3syl6ib 159 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  A  ->  ( B  <  A  \/  C  <  B ) ) )
54con3d 594 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( B  <  A  \/  C  <  B )  ->  -.  C  <  A ) )
6 lenlt 7243 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
763adant3 959 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
8 lenlt 7243 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
983adant1 957 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
107, 9anbi12d 457 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) ) )
11 ioran 702 . . 3  |-  ( -.  ( B  <  A  \/  C  <  B )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) )
1210, 11syl6bbr 196 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  <->  -.  ( B  <  A  \/  C  <  B ) ) )
13 lenlt 7243 . . 3  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
14133adant2 958 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
155, 12, 143imtr4d 201 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    /\ w3a 920    e. wcel 1434   class class class wbr 3787   RRcr 7031    < clt 7204    <_ cle 7205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-pre-ltwlin 7140
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-xp 4371  df-cnv 4373  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210
This theorem is referenced by:  letri  7274  letrd  7289  le2add  7604  le2sub  7621  p1le  7983  lemul12b  7995  lemul12a  7996  zletr  8470  peano2uz2  8524  ledivge1le  8873  fznlem  9125  elfz1b  9172  elfz0fzfz0  9203  fz0fzelfz0  9204  fz0fzdiffz0  9207  elfzmlbp  9209  difelfznle  9212  ssfzo12bi  9300  flqge  9353  fldiv4p1lem1div2  9376  monoord  9540  leexp2r  9616  expubnd  9619  le2sq2  9637  facwordi  9753  faclbnd3  9756  facavg  9759  fimaxre2  10236  ialgcvga  10566  prmdvdsfz  10653  prmfac1  10664
  Copyright terms: Public domain W3C validator