ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt0neg1d Unicode version

Theorem lt0neg1d 8245
Description: Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
lt0neg1d  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )

Proof of Theorem lt0neg1d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 lt0neg1 8198 . 2  |-  ( A  e.  RR  ->  ( A  <  0  <->  0  <  -u A ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 1465   class class class wbr 3899   RRcr 7587   0cc0 7588    < clt 7768   -ucneg 7902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-ltxr 7773  df-sub 7903  df-neg 7904
This theorem is referenced by:  reapmul1  8325  recgt0  8576  prodgt0  8578  prodge0  8580  elnn0z  9035  ztri3or0  9064  exp3val  10263  expnegap0  10269  resqrexlemgt0  10760  climge0  11062  zdvdsdc  11441  divalglemex  11546  divalglemeuneg  11547  sincosq4sgn  12837  sinq34lt0t  12839  coseq0negpitopi  12844
  Copyright terms: Public domain W3C validator