ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2add Unicode version

Theorem lt2add 7514
Description: Adding both sides of two 'less than' relations. Theorem I.25 of [Apostol] p. 20. (Contributed by NM, 15-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lt2add  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <  D )  ->  ( A  +  B )  <  ( C  +  D )
) )

Proof of Theorem lt2add
StepHypRef Expression
1 simpll 489 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
2 simprl 491 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
3 simplr 490 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
4 ltadd1 7498 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <  C  <->  ( A  +  B )  <  ( C  +  B )
) )
51, 2, 3, 4syl3anc 1146 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <  C  <->  ( A  +  B )  <  ( C  +  B ) ) )
6 simprr 492 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
73, 6, 2ltadd2d 7490 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  <  D  <->  ( C  +  B )  <  ( C  +  D ) ) )
85, 7anbi12d 450 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <  D )  <->  ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <  ( C  +  D )
) ) )
91, 3readdcld 7114 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  B
)  e.  RR )
102, 3readdcld 7114 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  B
)  e.  RR )
112, 6readdcld 7114 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  D
)  e.  RR )
12 lttr 7151 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( ( A  +  B )  <  ( C  +  B )  /\  ( C  +  B )  <  ( C  +  D
) )  ->  ( A  +  B )  <  ( C  +  D
) ) )
139, 10, 11, 12syl3anc 1146 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  +  B )  < 
( C  +  B
)  /\  ( C  +  B )  <  ( C  +  D )
)  ->  ( A  +  B )  <  ( C  +  D )
) )
148, 13sylbid 143 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  < 
C  /\  B  <  D )  ->  ( A  +  B )  <  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    e. wcel 1409   class class class wbr 3792  (class class class)co 5540   RRcr 6946    + caddc 6950    < clt 7119
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-pre-lttrn 7056  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-iota 4895  df-fv 4938  df-ov 5543  df-pnf 7121  df-mnf 7122  df-ltxr 7124
This theorem is referenced by:  addgt0  7517  lt2addi  7576  lt2halves  8217
  Copyright terms: Public domain W3C validator