ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2halvesd Unicode version

Theorem lt2halvesd 8415
Description: A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
rehalfcld.1  |-  ( ph  ->  A  e.  RR )
lt2halvesd.2  |-  ( ph  ->  B  e.  RR )
lt2halvesd.3  |-  ( ph  ->  C  e.  RR )
lt2halvesd.4  |-  ( ph  ->  A  <  ( C  /  2 ) )
lt2halvesd.5  |-  ( ph  ->  B  <  ( C  /  2 ) )
Assertion
Ref Expression
lt2halvesd  |-  ( ph  ->  ( A  +  B
)  <  C )

Proof of Theorem lt2halvesd
StepHypRef Expression
1 lt2halvesd.4 . 2  |-  ( ph  ->  A  <  ( C  /  2 ) )
2 lt2halvesd.5 . 2  |-  ( ph  ->  B  <  ( C  /  2 ) )
3 rehalfcld.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 lt2halvesd.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 lt2halvesd.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 lt2halves 8403 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <  ( C  /  2 )  /\  B  <  ( C  / 
2 ) )  -> 
( A  +  B
)  <  C )
)
73, 4, 5, 6syl3anc 1170 . 2  |-  ( ph  ->  ( ( A  < 
( C  /  2
)  /\  B  <  ( C  /  2 ) )  ->  ( A  +  B )  <  C
) )
81, 2, 7mp2and 424 1  |-  ( ph  ->  ( A  +  B
)  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   class class class wbr 3805  (class class class)co 5564   RRcr 7112    + caddc 7116    < clt 7285    / cdiv 7897   2c2 8226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-mulrcl 7207  ax-addcom 7208  ax-mulcom 7209  ax-addass 7210  ax-mulass 7211  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-1rid 7215  ax-0id 7216  ax-rnegex 7217  ax-precex 7218  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224  ax-pre-mulgt0 7225  ax-pre-mulext 7226
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-reap 7812  df-ap 7819  df-div 7898  df-2 8235
This theorem is referenced by:  abs3lem  10216  qdencn  11070
  Copyright terms: Public domain W3C validator