ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaprlem Unicode version

Theorem ltaprlem 7419
Description: Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
Assertion
Ref Expression
ltaprlem  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )

Proof of Theorem ltaprlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7414 . . . 4  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
21adantr 274 . . 3  |-  ( ( A  <P  B  /\  C  e.  P. )  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
3 simplr 519 . . . . . 6  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  C  e.  P. )
4 ltrelpr 7306 . . . . . . . . . 10  |-  <P  C_  ( P.  X.  P. )
54brel 4586 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
65simpld 111 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
76adantr 274 . . . . . . 7  |-  ( ( A  <P  B  /\  C  e.  P. )  ->  A  e.  P. )
87adantr 274 . . . . . 6  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  A  e.  P. )
9 addclpr 7338 . . . . . 6  |-  ( ( C  e.  P.  /\  A  e.  P. )  ->  ( C  +P.  A
)  e.  P. )
103, 8, 9syl2anc 408 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  A )  e.  P. )
11 simprl 520 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  x  e.  P. )
12 ltaddpr 7398 . . . . 5  |-  ( ( ( C  +P.  A
)  e.  P.  /\  x  e.  P. )  ->  ( C  +P.  A
)  <P  ( ( C  +P.  A )  +P.  x ) )
1310, 11, 12syl2anc 408 . . . 4  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  A )  <P  (
( C  +P.  A
)  +P.  x )
)
14 addassprg 7380 . . . . . 6  |-  ( ( C  e.  P.  /\  A  e.  P.  /\  x  e.  P. )  ->  (
( C  +P.  A
)  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
153, 8, 11, 14syl3anc 1216 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  ( A  +P.  x ) ) )
16 oveq2 5775 . . . . . 6  |-  ( ( A  +P.  x )  =  B  ->  ( C  +P.  ( A  +P.  x ) )  =  ( C  +P.  B
) )
1716ad2antll 482 . . . . 5  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  ( A  +P.  x
) )  =  ( C  +P.  B ) )
1815, 17eqtrd 2170 . . . 4  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( ( C  +P.  A )  +P.  x )  =  ( C  +P.  B ) )
1913, 18breqtrd 3949 . . 3  |-  ( ( ( A  <P  B  /\  C  e.  P. )  /\  ( x  e.  P.  /\  ( A  +P.  x
)  =  B ) )  ->  ( C  +P.  A )  <P  ( C  +P.  B ) )
202, 19rexlimddv 2552 . 2  |-  ( ( A  <P  B  /\  C  e.  P. )  ->  ( C  +P.  A
)  <P  ( C  +P.  B ) )
2120expcom 115 1  |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A )  <P 
( C  +P.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   P.cnp 7092    +P. cpp 7094    <P cltp 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269  df-iltp 7271
This theorem is referenced by:  ltaprg  7420
  Copyright terms: Public domain W3C validator