ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltasrg Unicode version

Theorem ltasrg 6913
Description: Ordering property of addition. (Contributed by NM, 10-May-1996.)
Assertion
Ref Expression
ltasrg  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  <R  B  <->  ( C  +R  A )  <R  ( C  +R  B ) ) )

Proof of Theorem ltasrg
Dummy variables  x  y  z  w  v  u  s  r  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 6870 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5547 . . . . 5  |-  ( [
<. v ,  u >. ]  ~R  =  C  -> 
( [ <. v ,  u >. ]  ~R  +R  [
<. x ,  y >. ]  ~R  )  =  ( C  +R  [ <. x ,  y >. ]  ~R  ) )
3 oveq1 5547 . . . . 5  |-  ( [
<. v ,  u >. ]  ~R  =  C  -> 
( [ <. v ,  u >. ]  ~R  +R  [
<. z ,  w >. ]  ~R  )  =  ( C  +R  [ <. z ,  w >. ]  ~R  ) )
42, 3breq12d 3805 . . . 4  |-  ( [
<. v ,  u >. ]  ~R  =  C  -> 
( ( [ <. v ,  u >. ]  ~R  +R  [ <. x ,  y
>. ]  ~R  )  <R 
( [ <. v ,  u >. ]  ~R  +R  [
<. z ,  w >. ]  ~R  )  <->  ( C  +R  [ <. x ,  y
>. ]  ~R  )  <R 
( C  +R  [ <. z ,  w >. ]  ~R  ) ) )
54bibi2d 225 . . 3  |-  ( [
<. v ,  u >. ]  ~R  =  C  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( [ <. v ,  u >. ]  ~R  +R  [ <. x ,  y >. ]  ~R  )  <R  ( [ <. v ,  u >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  ) )  <-> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( C  +R  [ <. x ,  y
>. ]  ~R  )  <R 
( C  +R  [ <. z ,  w >. ]  ~R  ) ) ) )
6 breq1 3795 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  A  <R  [
<. z ,  w >. ]  ~R  ) )
7 oveq2 5548 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( C  +R  [ <. x ,  y >. ]  ~R  )  =  ( C  +R  A ) )
87breq1d 3802 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( C  +R  [
<. x ,  y >. ]  ~R  )  <R  ( C  +R  [ <. z ,  w >. ]  ~R  )  <->  ( C  +R  A ) 
<R  ( C  +R  [ <. z ,  w >. ]  ~R  ) ) )
96, 8bibi12d 228 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( C  +R  [ <. x ,  y
>. ]  ~R  )  <R 
( C  +R  [ <. z ,  w >. ]  ~R  ) )  <->  ( A  <R  [ <. z ,  w >. ]  ~R  <->  ( C  +R  A )  <R  ( C  +R  [ <. z ,  w >. ]  ~R  )
) ) )
10 breq2 3796 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  <R  [ <. z ,  w >. ]  ~R  <->  A 
<R  B ) )
11 oveq2 5548 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( C  +R  [ <. z ,  w >. ]  ~R  )  =  ( C  +R  B ) )
1211breq2d 3804 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( C  +R  A )  <R  ( C  +R  [ <. z ,  w >. ]  ~R  )  <->  ( C  +R  A ) 
<R  ( C  +R  B
) ) )
1310, 12bibi12d 228 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  <R  [
<. z ,  w >. ]  ~R  <->  ( C  +R  A )  <R  ( C  +R  [ <. z ,  w >. ]  ~R  )
)  <->  ( A  <R  B  <-> 
( C  +R  A
)  <R  ( C  +R  B ) ) ) )
14 simp2l 941 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  x  e.  P. )
15 simp3r 944 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  w  e.  P. )
16 addclpr 6693 . . . . . . 7  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  +P.  w
)  e.  P. )
1714, 15, 16syl2anc 397 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( x  +P.  w )  e.  P. )
18 simp2r 942 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  y  e.  P. )
19 simp3l 943 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  z  e.  P. )
20 addclpr 6693 . . . . . . 7  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  +P.  z
)  e.  P. )
2118, 19, 20syl2anc 397 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( y  +P.  z )  e.  P. )
22 addclpr 6693 . . . . . . 7  |-  ( ( v  e.  P.  /\  u  e.  P. )  ->  ( v  +P.  u
)  e.  P. )
23223ad2ant1 936 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( v  +P.  u )  e.  P. )
24 ltaprg 6775 . . . . . 6  |-  ( ( ( x  +P.  w
)  e.  P.  /\  ( y  +P.  z
)  e.  P.  /\  ( v  +P.  u
)  e.  P. )  ->  ( ( x  +P.  w )  <P  (
y  +P.  z )  <->  ( ( v  +P.  u
)  +P.  ( x  +P.  w ) )  <P 
( ( v  +P.  u )  +P.  (
y  +P.  z )
) ) )
2517, 21, 23, 24syl3anc 1146 . . . . 5  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  +P.  w )  <P  ( y  +P.  z
)  <->  ( ( v  +P.  u )  +P.  ( x  +P.  w
) )  <P  (
( v  +P.  u
)  +P.  ( y  +P.  z ) ) ) )
26 ltsrprg 6890 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
27263adant1 933 . . . . 5  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( x  +P.  w )  <P  (
y  +P.  z )
) )
28 simp1l 939 . . . . . . . 8  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  v  e.  P. )
29 addclpr 6693 . . . . . . . 8  |-  ( ( v  e.  P.  /\  x  e.  P. )  ->  ( v  +P.  x
)  e.  P. )
3028, 14, 29syl2anc 397 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( v  +P.  x )  e.  P. )
31 simp1r 940 . . . . . . . 8  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  u  e.  P. )
32 addclpr 6693 . . . . . . . 8  |-  ( ( u  e.  P.  /\  y  e.  P. )  ->  ( u  +P.  y
)  e.  P. )
3331, 18, 32syl2anc 397 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( u  +P.  y )  e.  P. )
34 addclpr 6693 . . . . . . . 8  |-  ( ( v  e.  P.  /\  z  e.  P. )  ->  ( v  +P.  z
)  e.  P. )
3528, 19, 34syl2anc 397 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( v  +P.  z )  e.  P. )
36 addclpr 6693 . . . . . . . 8  |-  ( ( u  e.  P.  /\  w  e.  P. )  ->  ( u  +P.  w
)  e.  P. )
3731, 15, 36syl2anc 397 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( u  +P.  w )  e.  P. )
38 ltsrprg 6890 . . . . . . 7  |-  ( ( ( ( v  +P.  x )  e.  P.  /\  ( u  +P.  y
)  e.  P. )  /\  ( ( v  +P.  z )  e.  P.  /\  ( u  +P.  w
)  e.  P. )
)  ->  ( [ <. ( v  +P.  x
) ,  ( u  +P.  y ) >. ]  ~R  <R  [ <. (
v  +P.  z ) ,  ( u  +P.  w ) >. ]  ~R  <->  ( ( v  +P.  x
)  +P.  ( u  +P.  w ) )  <P 
( ( u  +P.  y )  +P.  (
v  +P.  z )
) ) )
3930, 33, 35, 37, 38syl22anc 1147 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. ( v  +P.  x
) ,  ( u  +P.  y ) >. ]  ~R  <R  [ <. (
v  +P.  z ) ,  ( u  +P.  w ) >. ]  ~R  <->  ( ( v  +P.  x
)  +P.  ( u  +P.  w ) )  <P 
( ( u  +P.  y )  +P.  (
v  +P.  z )
) ) )
40 addcomprg 6734 . . . . . . . . 9  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  =  ( s  +P.  r ) )
4140adantl 266 . . . . . . . 8  |-  ( ( ( ( v  e. 
P.  /\  u  e.  P. )  /\  (
x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P. ) )  -> 
( r  +P.  s
)  =  ( s  +P.  r ) )
42 addassprg 6735 . . . . . . . . 9  |-  ( ( r  e.  P.  /\  s  e.  P.  /\  t  e.  P. )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
4342adantl 266 . . . . . . . 8  |-  ( ( ( ( v  e. 
P.  /\  u  e.  P. )  /\  (
x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P.  /\  t  e.  P. ) )  ->  (
( r  +P.  s
)  +P.  t )  =  ( r  +P.  ( s  +P.  t
) ) )
44 addclpr 6693 . . . . . . . . 9  |-  ( ( r  e.  P.  /\  s  e.  P. )  ->  ( r  +P.  s
)  e.  P. )
4544adantl 266 . . . . . . . 8  |-  ( ( ( ( v  e. 
P.  /\  u  e.  P. )  /\  (
x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  /\  ( r  e.  P.  /\  s  e. 
P. ) )  -> 
( r  +P.  s
)  e.  P. )
4628, 14, 31, 41, 43, 15, 45caov4d 5713 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
v  +P.  x )  +P.  ( u  +P.  w
) )  =  ( ( v  +P.  u
)  +P.  ( x  +P.  w ) ) )
4741, 33, 35caovcomd 5685 . . . . . . . 8  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
u  +P.  y )  +P.  ( v  +P.  z
) )  =  ( ( v  +P.  z
)  +P.  ( u  +P.  y ) ) )
4828, 19, 31, 41, 43, 18, 45caov42d 5715 . . . . . . . 8  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
v  +P.  z )  +P.  ( u  +P.  y
) )  =  ( ( v  +P.  u
)  +P.  ( y  +P.  z ) ) )
4947, 48eqtrd 2088 . . . . . . 7  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
u  +P.  y )  +P.  ( v  +P.  z
) )  =  ( ( v  +P.  u
)  +P.  ( y  +P.  z ) ) )
5046, 49breq12d 3805 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( v  +P.  x
)  +P.  ( u  +P.  w ) )  <P 
( ( u  +P.  y )  +P.  (
v  +P.  z )
)  <->  ( ( v  +P.  u )  +P.  ( x  +P.  w
) )  <P  (
( v  +P.  u
)  +P.  ( y  +P.  z ) ) ) )
5139, 50bitrd 181 . . . . 5  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. ( v  +P.  x
) ,  ( u  +P.  y ) >. ]  ~R  <R  [ <. (
v  +P.  z ) ,  ( u  +P.  w ) >. ]  ~R  <->  ( ( v  +P.  u
)  +P.  ( x  +P.  w ) )  <P 
( ( v  +P.  u )  +P.  (
y  +P.  z )
) ) )
5225, 27, 513bitr4d 213 . . . 4  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  [ <. (
v  +P.  x ) ,  ( u  +P.  y ) >. ]  ~R  <R  [ <. ( v  +P.  z ) ,  ( u  +P.  w )
>. ]  ~R  ) )
53 addsrpr 6888 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  +R  [ <. x ,  y >. ]  ~R  )  =  [ <. (
v  +P.  x ) ,  ( u  +P.  y ) >. ]  ~R  )
54533adant3 935 . . . . 5  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  +R  [ <. x ,  y >. ]  ~R  )  =  [ <. (
v  +P.  x ) ,  ( u  +P.  y ) >. ]  ~R  )
55 addsrpr 6888 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
v  +P.  z ) ,  ( u  +P.  w ) >. ]  ~R  )
56553adant2 934 . . . . 5  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
v  +P.  z ) ,  ( u  +P.  w ) >. ]  ~R  )
5754, 56breq12d 3805 . . . 4  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( [ <. v ,  u >. ]  ~R  +R  [ <. x ,  y >. ]  ~R  )  <R  ( [ <. v ,  u >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  )  <->  [ <. (
v  +P.  x ) ,  ( u  +P.  y ) >. ]  ~R  <R  [ <. ( v  +P.  z ) ,  ( u  +P.  w )
>. ]  ~R  ) )
5852, 57bitr4d 184 . . 3  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  <R  [ <. z ,  w >. ]  ~R  <->  ( [ <. v ,  u >. ]  ~R  +R  [ <. x ,  y >. ]  ~R  )  <R  ( [ <. v ,  u >. ]  ~R  +R  [ <. z ,  w >. ]  ~R  ) ) )
591, 5, 9, 13, 583ecoptocl 6226 . 2  |-  ( ( C  e.  R.  /\  A  e.  R.  /\  B  e.  R. )  ->  ( A  <R  B  <->  ( C  +R  A )  <R  ( C  +R  B ) ) )
60593coml 1122 1  |-  ( ( A  e.  R.  /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  <R  B  <->  ( C  +R  A )  <R  ( C  +R  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   <.cop 3406   class class class wbr 3792  (class class class)co 5540   [cec 6135   P.cnp 6447    +P. cpp 6449    <P cltp 6451    ~R cer 6452   R.cnr 6453    +R cplr 6457    <R cltr 6459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-plr 6871  df-ltr 6873
This theorem is referenced by:  addgt0sr  6918  ltadd1sr  6919  caucvgsrlemoffcau  6940  caucvgsrlemoffgt1  6941  caucvgsrlemoffres  6942  caucvgsr  6944  axpre-ltadd  7018
  Copyright terms: Public domain W3C validator