ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lteupri Unicode version

Theorem lteupri 6743
Description: The difference from ltexpri 6739 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
Assertion
Ref Expression
lteupri  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem lteupri
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ltexpri 6739 . 2  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
2 ltrelpr 6631 . . . . 5  |-  <P  C_  ( P.  X.  P. )
32brel 4417 . . . 4  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
43simpld 109 . . 3  |-  ( A 
<P  B  ->  A  e. 
P. )
5 eqtr3 2073 . . . . . . . 8  |-  ( ( ( A  +P.  x
)  =  B  /\  ( A  +P.  y )  =  B )  -> 
( A  +P.  x
)  =  ( A  +P.  y ) )
6 addcanprg 6742 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( A  +P.  x
)  =  ( A  +P.  y )  ->  x  =  y )
)
75, 6syl5 32 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
873expa 1113 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  P. )  /\  y  e.  P. )  ->  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
98ralrimiva 2407 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  P. )  ->  A. y  e.  P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
109ralrimiva 2407 . . . 4  |-  ( A  e.  P.  ->  A. x  e.  P.  A. y  e. 
P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
11 oveq2 5545 . . . . . 6  |-  ( x  =  y  ->  ( A  +P.  x )  =  ( A  +P.  y
) )
1211eqeq1d 2062 . . . . 5  |-  ( x  =  y  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  y )  =  B ) )
1312rmo4 2754 . . . 4  |-  ( E* x  e.  P.  ( A  +P.  x )  =  B  <->  A. x  e.  P.  A. y  e.  P.  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
1410, 13sylibr 141 . . 3  |-  ( A  e.  P.  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
154, 14syl 14 . 2  |-  ( A 
<P  B  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
16 reu5 2537 . 2  |-  ( E! x  e.  P.  ( A  +P.  x )  =  B  <->  ( E. x  e.  P.  ( A  +P.  x )  =  B  /\  E* x  e. 
P.  ( A  +P.  x )  =  B ) )
171, 15, 16sylanbrc 402 1  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 894    = wceq 1257    e. wcel 1407   A.wral 2321   E.wrex 2322   E!wreu 2323   E*wrmo 2324   class class class wbr 3789  (class class class)co 5537   P.cnp 6417    +P. cpp 6419    <P cltp 6421
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rmo 2329  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-iplp 6594  df-iltp 6596
This theorem is referenced by:  srpospr  6895
  Copyright terms: Public domain W3C validator