ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopl Unicode version

Theorem ltexprlemopl 7409
Description: The lower cut of our constructed difference is open. Lemma for ltexpri 7421. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemopl  |-  ( ( A  <P  B  /\  q  e.  Q.  /\  q  e.  ( 1st `  C
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemopl
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemell 7406 . . . 4  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
32simprbi 273 . . 3  |-  ( q  e.  ( 1st `  C
)  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
4 19.42v 1878 . . . . . . . 8  |-  ( E. y ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  <->  ( A  <P  B  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
5 19.42v 1878 . . . . . . . . 9  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
65anbi2i 452 . . . . . . . 8  |-  ( ( A  <P  B  /\  E. y ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  <->  ( A  <P  B  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
74, 6bitri 183 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  <->  ( A  <P  B  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
8 ltrelpr 7313 . . . . . . . . . . . . . 14  |-  <P  C_  ( P.  X.  P. )
98brel 4591 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simprd 113 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  B  e. 
P. )
11 prop 7283 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
12 prnmaxl 7296 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
1311, 12sylan 281 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
1410, 13sylan 281 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
1514adantrl 469 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  ->  E. s  e.  ( 1st `  B
) ( y  +Q  q )  <Q  s
)
1615adantrl 469 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
179simpld 111 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  A  e. 
P. )
1817ad2antrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  A  e.  P. )
19 simplrr 525 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) )
2019simpld 111 . . . . . . . . . . . . . 14  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  e.  ( 2nd `  A
) )
21 prop 7283 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
22 elprnqu 7290 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2321, 22sylan 281 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2418, 20, 23syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  e.  Q. )
25 simplrl 524 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  q  e.  Q. )
26 ltaddnq 7215 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  q  e.  Q. )  ->  y  <Q  ( y  +Q  q ) )
2724, 25, 26syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  <Q  ( y  +Q  q
) )
28 simprr 521 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  (
y  +Q  q ) 
<Q  s )
29 ltsonq 7206 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
30 ltrelnq 7173 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
3129, 30sotri 4934 . . . . . . . . . . . 12  |-  ( ( y  <Q  ( y  +Q  q )  /\  (
y  +Q  q ) 
<Q  s )  ->  y  <Q  s )
3227, 28, 31syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  <Q  s )
3310ad2antrr 479 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  B  e.  P. )
34 simprl 520 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  s  e.  ( 1st `  B
) )
35 elprnql 7289 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  s  e.  ( 1st `  B ) )  -> 
s  e.  Q. )
3611, 35sylan 281 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  s  e.  ( 1st `  B ) )  -> 
s  e.  Q. )
3733, 34, 36syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  s  e.  Q. )
38 ltexnqq 7216 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  s  e.  Q. )  ->  ( y  <Q  s  <->  E. r  e.  Q.  (
y  +Q  r )  =  s ) )
3924, 37, 38syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  (
y  <Q  s  <->  E. r  e.  Q.  ( y  +Q  r )  =  s ) )
4032, 39mpbid 146 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  E. r  e.  Q.  ( y  +Q  r )  =  s )
41 simplrr 525 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  q )  <Q  s
)
42 simprr 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  r )  =  s )
4341, 42breqtrrd 3956 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
4425adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  q  e.  Q. )
45 simprl 520 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  r  e.  Q. )
4624adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  y  e.  Q. )
47 ltanqg 7208 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Q.  /\  r  e.  Q.  /\  y  e.  Q. )  ->  (
q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
4844, 45, 46, 47syl3anc 1216 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
4943, 48mpbird 166 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  q  <Q  r )
5020adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  y  e.  ( 2nd `  A ) )
51 simplrl 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  s  e.  ( 1st `  B ) )
5242, 51eqeltrd 2216 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  r )  e.  ( 1st `  B ) )
5350, 52jca 304 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) )
5449, 45, 53jca32 308 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( q  <Q  r  /\  ( r  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  r )  e.  ( 1st `  B
) ) ) ) )
5554expr 372 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  r  e.  Q. )  ->  (
( y  +Q  r
)  =  s  -> 
( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) ) )
5655reximdva 2534 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  ( E. r  e.  Q.  ( y  +Q  r
)  =  s  ->  E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) ) )
5740, 56mpd 13 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
5816, 57rexlimddv 2554 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
5958eximi 1579 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. y E. r  e. 
Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
607, 59sylbir 134 . . . . . 6  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. y E. r  e. 
Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
61 rexcom4 2709 . . . . . 6  |-  ( E. r  e.  Q.  E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  E. y E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6260, 61sylibr 133 . . . . 5  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
63 19.42v 1878 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
64 19.42v 1878 . . . . . . . 8  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )
6564anbi2i 452 . . . . . . 7  |-  ( ( q  <Q  r  /\  E. y ( r  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  ( q  <Q  r  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6663, 65bitri 183 . . . . . 6  |-  ( E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  ( q  <Q  r  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6766rexbii 2442 . . . . 5  |-  ( E. r  e.  Q.  E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6862, 67sylib 121 . . . 4  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
691ltexprlemell 7406 . . . . . 6  |-  ( r  e.  ( 1st `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )
7069anbi2i 452 . . . . 5  |-  ( ( q  <Q  r  /\  r  e.  ( 1st `  C ) )  <->  ( q  <Q  r  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
7170rexbii 2442 . . . 4  |-  ( E. r  e.  Q.  (
q  <Q  r  /\  r  e.  ( 1st `  C
) )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
7268, 71sylibr 133 . . 3  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )
733, 72sylanr2 402 . 2  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\  q  e.  ( 1st `  C ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )
74733impb 1177 1  |-  ( ( A  <P  B  /\  q  e.  Q.  /\  q  e.  ( 1st `  C
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   {crab 2420   <.cop 3530   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088    +Q cplq 7090    <Q cltq 7093   P.cnp 7099    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-ltnqqs 7161  df-inp 7274  df-iltp 7278
This theorem is referenced by:  ltexprlemrnd  7413
  Copyright terms: Public domain W3C validator